Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7710, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001067

RESUMO

The spatial organisation of cellular protein expression profiles within tissue determines cellular function and is key to understanding disease pathology. To define molecular phenotypes in the spatial context of tissue, there is a need for unbiased, quantitative technology capable of mapping proteomes within tissue structures. Here, we present a workflow for spatially-resolved, quantitative proteomics of tissue that generates maps of protein abundance across tissue slices derived from a human atypical teratoid-rhabdoid tumour at three spatial resolutions, the highest being 40 µm, to reveal distinct abundance patterns of thousands of proteins. We employ spatially-aware algorithms that do not require prior knowledge of the fine tissue structure to detect proteins and pathways with spatial abundance patterns and correlate proteins in the context of tissue heterogeneity and cellular features such as extracellular matrix or proximity to blood vessels. We identify PYGL, ASPH and CD45 as spatial markers for tumour boundary and reveal immune response-driven, spatially-organised protein networks of the extracellular tumour matrix. Overall, we demonstrate spatially-aware deep proteo-phenotyping of tissue heterogeneity, to re-define understanding tissue biology and pathology at the molecular level.


Assuntos
Neoplasias Encefálicas , Tumor Rabdoide , Humanos , Proteômica , Proteoma/metabolismo , Algoritmos
2.
Nat Commun ; 12(1): 3266, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075032

RESUMO

The epidemic emergence of relatively rare and geographically isolated flaviviruses adds to the ongoing disease burden of viruses such as dengue. Structural analysis is key to understand and combat these pathogens. Here, we present a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses. We use this approach to resolve the architecture of two neurotropic viruses and a structure of dengue virus at 2.5 Å, the highest resolution for an enveloped virion. These reconstructions allow improved modelling of the stem region of the envelope protein, revealing two lipid-like ligands within highly conserved pockets. We show that these sites are essential for viral growth and important for viral maturation. These findings define a hallmark of flavivirus virions and a potential target for broad-spectrum antivirals and vaccine design. We anticipate the chimeric platform to be widely applicable for investigating flavivirus biology.


Assuntos
Infecções por Flavivirus/terapia , Flavivirus/ultraestrutura , Proteínas do Envelope Viral/ultraestrutura , Vírion/ultraestrutura , Aedes/virologia , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Microscopia Crioeletrônica , Dengue/terapia , Dengue/virologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/farmacologia , Desenho de Fármacos , Flavivirus/efeitos dos fármacos , Flavivirus/imunologia , Flavivirus/patogenicidade , Infecções por Flavivirus/virologia , Humanos , Mesocricetus , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Células Vero , Proteínas do Envelope Viral/metabolismo , Vacinas Virais/farmacologia , Vacinas Virais/uso terapêutico , Vírion/efeitos dos fármacos , Vírion/metabolismo
3.
Neurooncol Adv ; 1(1): vdz008, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608327

RESUMO

BACKGROUND: The molecular genetic classification of gliomas, particularly the identification of isocitrate dehydrogenase (IDH) mutations, is critical for clinical and surgical decision-making. Raman spectroscopy probes the unique molecular vibrations of a sample to accurately characterize its molecular composition. No sample processing is required allowing for rapid analysis of tissue. The aim of this study was to evaluate the ability of Raman spectroscopy to rapidly identify the common molecular genetic subtypes of diffuse glioma in the neurosurgical setting using fresh biopsy tissue. In addition, classification models were built using cryosections, formalin-fixed paraffin-embedded (FFPE) sections and LN-18 (IDH-mutated and wild-type parental cell) glioma cell lines. METHODS: Fresh tissue, straight from neurosurgical theatres, underwent Raman analysis and classification into astrocytoma, IDH-wild-type; astrocytoma, IDH-mutant; or oligodendroglioma. The genetic subtype was confirmed on a parallel section using immunohistochemistry and targeted genetic sequencing. RESULTS: Fresh tissue samples from 62 patients were collected (36 astrocytoma, IDH-wild-type; 21 astrocytoma, IDH-mutated; 5 oligodendroglioma). A principal component analysis fed linear discriminant analysis classification model demonstrated 79%-94% sensitivity and 90%-100% specificity for predicting the 3 glioma genetic subtypes. For the prediction of IDH mutation alone, the model gave 91% sensitivity and 95% specificity. Seventy-nine cryosections, 120 FFPE samples, and LN18 cells were also successfully classified. Meantime for Raman data collection was 9.5 min in the fresh tissue samples, with the process from intraoperative biopsy to genetic classification taking under 15 min. CONCLUSION: These data demonstrate that Raman spectroscopy can be used for the rapid, intraoperative, classification of gliomas into common genetic subtypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA