Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38980760

RESUMO

BACKGROUND: Acanthamoeba spp. is the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis. Strathclyde minor groove binders (S-MGBs) are a promising new class of anti-infective agent that have been shown to be effective against many infectious organisms. OBJECTIVES: To synthesize and evaluate the anti-Acanthamoeba activity of a panel of S-MGBs, and therefore determine the potential of this class for further development. METHODS: A panel of 12 S-MGBs was synthesized and anti-Acanthamoeba activity was determined using an alamarBlue™-based trophocidal assay against Acanthamoeba castellanii. Cross-screening against Trypanosoma brucei brucei, Staphylococcus aureus and Escherichia coli was used to investigate selective potency. Cytotoxicity against HEK293 cells allowed for selective toxicity to be measured. DNA binding studies were carried out using native mass spectrometry and DNA thermal shift assays. RESULTS AND DISCUSSION: S-MGB-241 has an IC50 of 6.6 µM against A. castellanii, comparable to the clinically used miltefosine (5.6 µM) and negligible activity against the other organisms. It was also found to have an IC50 > 100 µM against HEK293 cells, demonstrating low cytotoxicity. S-MGB-241 binds to DNA as a dimer, albeit weakly compared to other S-MGBs previously studied. This was confirmed by DNA thermal shift assay with a ΔTm = 1 ±â€Š0.1°C. CONCLUSIONS: Together, these data provide confidence that S-MGBs can be further optimized to generate new, potent treatments for Acanthameoba spp. infections. In particular, S-MGB-241, has been identified as a 'hit' compound that is selectively active against A. castellanii, providing a starting point from which to begin optimization of DNA binding and potency.

2.
Bioorg Chem ; 148: 107414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733748

RESUMO

Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.


Assuntos
DNA , DNA/química , DNA/metabolismo , Ligantes , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Estrutura Molecular , Conformação de Ácido Nucleico , Sítios de Ligação , Relação Estrutura-Atividade , Modelos Moleculares , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Linhagem Celular Tumoral
3.
J Antimicrob Chemother ; 77(4): 1061-1071, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35084027

RESUMO

BACKGROUND: Previously, we evaluated the intracellular mycobactericidal activity of the minor groove binder, S-MGB-364 against the clinical Mycobacterium tuberculosis (Mtb) strain HN878 in macrophages. OBJECTIVES: To assess the mycobactericidal activity of S-MGB-364 in Mtb-infected mice. Further, we investigated a plausible DNA binding mechanism of action of S-MGB-364. METHODS: The anti-TB and host immune effects of intranasal S-MGB-364 or S-MGB-364 encapsulated in non-ionic surfactant vesicles (NIV) were assessed in Mtb-infected mice by cfu enumeration, ELISA, histology, and flow cytometry. DNA binding was examined using native mass spectrometry and UV-vis thermal melt determination. S-MGB interference with DNA-centric biological events was assessed using a representative panel of Mtb and human topoisomerase I, and gyrase assays. RESULTS: S-MGB-364 bound strongly to DNA as a dimer, significantly increasing the stability of the DNA:S-MGB complex compared with DNA alone. Moreover, S-MGB-364 inhibited the relaxation of Mtb topoisomerase I but not the human form. In macrophages, S-MGB-364 or S-MGB-364-NIV did not cause DNA damage as shown by the low γ-H2AX expression. Importantly, in the lungs, the intranasal administration of S-MGB-364 or S-MGB-364-NIV formulation in Mtb-infected mice was non-toxic and resulted in a ∼1 log cfu reduction in mycobacterial burden, reduced the expression of proinflammatory cytokines/chemokines, altered immune cell recruitment, and importantly reduced recruitment of neutrophils. CONCLUSIONS: Together, these data provide proof of concept for S-MGBs as novel anti-TB therapeutics in vivo.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Imunidade , Macrófagos/microbiologia , Camundongos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
4.
Medchemcomm ; 10(9): 1620-1634, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32952999

RESUMO

Traditional cytotoxic agents which act through a DNA-alkylating mechanism are relatively non-specific, resulting in a small therapeutic window and thus limiting their effectiveness. In this study, we evaluate a panel of 24 non-alkylating Strathclyde Minor Groove Binders (S-MGBs), including 14 novel compounds, for in vitro anti-cancer activity against a human colon carcinoma cell line, a cisplatin-sensitive ovarian cancer cell line and a cisplatin-resistant ovarian cancer cell line. A human non-cancerous retinal epithelial cell line was used to measure selectivity of any response. We have identified several S-MGBs with activities comparable to cis-platin and carboplatin, but with better in vitro selectivity indices, particularly S-MGB-4, S-MGB-74 and S-MGB-317. Moreover, a comparison of the cis-platin resistant and cis-platin sensitive ovarian cancer cell lines reveals that our S-MGBs do not show cross resistance with cisplatin or carboplatin and that they likely have a different mechanism of action. Finally, we present an initial investigation into the mechanism of action of one compound from this class, S-MGB-4, demonstrating that neither DNA double strand breaks nor the DNA damage stress sensor protein p53 are induced. This indicates that our S-MGBs are unlikely to act through an alkylating or DNA damage response mechanism.

5.
J Antimicrob Chemother ; 72(12): 3334-3341, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961913

RESUMO

OBJECTIVES: The slow development of major advances in drug discovery for the treatment of Mycobacterium tuberculosis (Mtb) infection suggests a compelling need for evaluation of more effective drug therapies against TB. New classes of drugs are constantly being evaluated for anti-mycobacterial activity with currently a very limited number of new drugs approved for TB treatment. Minor groove binders (MGBs) have previously revealed promising antimicrobial activity against various infectious agents; however, they have not yet been screened against Mtb. METHODS: The mycobactericidal activity of 96 MGB compounds against Mtb was determined using an H37Rv-GFP microplate assay. MGB hits were screened for their intracellular mycobactericidal efficacy against the clinical Beijing Mtb strain HN878 in bone-marrow-derived macrophages using standard cfu counting. Cell viability was assessed by CellTiter-Blue assays. Selected MGBs were encapsulated into non-ionic surfactant vesicles (NIVs) for drug delivery system evaluation. RESULTS: H37Rv-GFP screening yielded a hit-list of seven compounds at an MIC99 of between 0.39 and 1.56 µM. MGB-362 and MGB-364 displayed intracellular mycobactericidal activity against Mtb HN878 at an MIC50 of 4.09 and 4.19 µM, respectively, whilst being non-toxic. Subsequent encapsulation into NIVs demonstrated a 1.6- and 2.1-fold increased intracellular mycobacterial activity, similar to that of rifampicin when compared with MGB-alone formulation. CONCLUSIONS: MGB anti-mycobacterial activities together with non-toxic properties indicate that MGB compounds constitute an important new class of drug/chemical entity, which holds promise in future anti-TB therapy. Furthermore, the ability of NIVs to better deliver entrapped MGB compounds to an intracellular Mtb infection suggests further preclinical evaluation is warranted.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Sistemas de Liberação de Medicamentos , Mycobacterium/efeitos dos fármacos , Tensoativos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Proteínas de Fluorescência Verde/análise , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Coloração e Rotulagem
6.
Bioorg Med Chem Lett ; 26(15): 3478-86, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27349332

RESUMO

A series of 47 structurally diverse MGBs, derived from the natural product distamycin, was evaluated for anti-lung cancer activity by screening against the melanoma cancer cell line B16-F10. Five compounds have been found to possess significant activity, more so than a standard therapy, Gemcitabine. Moreover, one compound has been found to have an activity around 70-fold that of Gemcitabine and has a favourable selectivity index of greater than 125. Furthermore, initial studies have revealed this compound to be metabolically stable and thus it represents a lead for further optimisation towards a novel treatment for lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Desoxicitidina/análogos & derivados , Distamicinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/isolamento & purificação , Desoxicitidina/farmacologia , Distamicinas/química , Distamicinas/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/patologia , Estrutura Molecular , Relação Estrutura-Atividade , Gencitabina
7.
Eur J Med Chem ; 56: 39-47, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22948178

RESUMO

The design and synthesis of a new class of minor groove binder (MGBs) in which, the cationic tail group has been replaced by a neutral, polar variant including cyanoguanidine, nitroalkene, and trifluoroacetamide groups. Antibacterial activity (against Gram positive bacteria) was found for both the nitroalkene and trifluoroacetamide groups. For the case of the nitroalkene tail group, strong binding of a minor groove binder containing this tail group was demonstrated by both DNA footprinting and melting temperature measurements, showing a correlation between DNA binding and antibacterial activity. The compounds have also been evaluated for binding to the hERG ion channel to determine whether non-cationic but polar substituents might have an advantage compared with conventional cationic tail groups in avoiding hERG binding. In this series of compounds, it was found that whilst non-cationic compounds generally had lower affinity to the hERG ion channel, all of the compounds studied bound weakly to the hERG ion channel, probably associated with the hydrophobic head groups.


Assuntos
Acetamidas/farmacologia , Alcenos/farmacologia , Antibacterianos/farmacologia , Desenho de Fármacos , Fluoracetatos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Guanidinas/farmacologia , Acetamidas/síntese química , Acetamidas/química , Alcenos/síntese química , Alcenos/química , Antibacterianos/síntese química , Antibacterianos/química , Sítios de Ligação/efeitos dos fármacos , Fluoracetatos/síntese química , Fluoracetatos/química , Guanidinas/síntese química , Guanidinas/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Transativadores/antagonistas & inibidores , Transativadores/química , Regulador Transcricional ERG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA