Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36808489

RESUMO

Climate warming could challenge the ability of endotherms to thermoregulate and maintain normal body temperature (Tb), but the effects of warming summer temperatures on activity and thermoregulatory physiology in many small mammals remain poorly understood. We examined this issue in deer mice (Peromyscus maniculatus), an active nocturnal species. Mice were exposed in the lab to simulated seasonal warming, in which an environmentally realistic diel cycle of ambient temperature (Ta) was gradually warmed from spring conditions to summer conditions (controls were maintained in spring conditions). Activity (voluntary wheel running) and Tb (implanted bio-loggers) were measured throughout, and indices of thermoregulatory physiology (thermoneutral zone, thermogenic capacity) were assessed after exposure. In control mice, activity was almost entirely restricted to the night-time, and Tb fluctuated ∼1.7°C between daytime lows and night-time highs. Activity, body mass and food consumption were reduced and water consumption was increased in later stages of summer warming. This was accompanied by strong Tb dysregulation that culminated in a complete reversal of the diel pattern of Tb variation, with Tb reaching extreme highs (∼40°C) during daytime heat but extreme lows (∼34°C) at cooler night-time temperatures. Summer warming was also associated with reduced ability to generate body heat, as reflected by decreased thermogenic capacity and decreased mass and uncoupling protein (UCP1) content of brown adipose tissue. Our findings suggest that thermoregulatory trade-offs associated with daytime heat exposure can affect Tb and activity at cooler night-time temperatures, impacting the ability of nocturnal mammals to perform behaviours important for fitness in the wild.


Assuntos
Atividade Motora , Peromyscus , Animais , Temperatura , Estações do Ano , Peromyscus/fisiologia , Regulação da Temperatura Corporal/fisiologia
2.
Am J Physiol Regul Integr Comp Physiol ; 317(3): R407-R417, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31242021

RESUMO

High-altitude natives have evolved to overcome environmental hypoxia and provide a compelling system to understand physiological function during reductions in oxygen availability. The sympathoadrenal system plays a key role in responses to acute hypoxia, but prolonged activation of this system in chronic hypoxia may be maladaptive. Here, we examined how chronic hypoxia exposure alters adrenal catecholamine secretion and how adrenal function is altered further in high-altitude natives. Populations of deer mice (Peromyscus maniculatus) native to low and high altitudes were each born and raised in captivity at sea level, and adults from each population were exposed to normoxia or hypobaric hypoxia for 5 mo. Using carbon fiber amperometry on adrenal slices, catecholamine secretion evoked by low doses of nicotine (10 µM) or acute hypoxia (Po2 ∼15-20 mmHg) was reduced in lowlanders exposed to hypobaric hypoxia, which was attributable mainly to a decrease in quantal charge rather than event frequency. However, secretion evoked by high doses of nicotine (50 µM) was unaffected. Hypobaric hypoxia also reduced plasma epinephrine and protein expression of 3,4-dihydroxyphenylalanine (DOPA) decarboxylase in the adrenal medulla of lowlanders. In contrast, highlanders were unresponsive to hypobaric hypoxia, exhibiting typically low adrenal catecholamine secretion, plasma epinephrine, and DOPA decarboxylase. Highlanders also had consistently lower catecholamine secretion evoked by high nicotine, smaller adrenal medullae with fewer chromaffin cells, and a larger adrenal cortex compared with lowlanders across both acclimation environments. Our results suggest that plastic responses to chronic hypoxia along with evolved changes in adrenal function attenuate catecholamine release in deer mice at high altitude.


Assuntos
Medula Suprarrenal/metabolismo , Altitude , Catecolaminas/metabolismo , Regulação da Expressão Gênica/fisiologia , Peromyscus/metabolismo , Distribuição Animal , Animais , Catecolaminas/genética , Hipóxia , Nicotina/farmacologia , Oxigênio , Consumo de Oxigênio/fisiologia
3.
J Exp Biol ; 222(Pt 7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30846536

RESUMO

We examined the control of breathing and respiratory gas exchange in six species of high-altitude duck that independently colonized the high Andes. We compared ducks from high-altitude populations in Peru (Lake Titicaca at ∼3800 m above sea level; Chancay River at ∼3000-4100 m) with closely related populations or species from low altitude. Hypoxic ventilatory responses were measured shortly after capture at the native altitude. In general, ducks responded to acute hypoxia with robust increases in total ventilation and pulmonary O2 extraction. O2 consumption rates were maintained or increased slightly in acute hypoxia, despite ∼1-2°C reductions in body temperature in most species. Two high-altitude taxa - yellow-billed pintail and torrent duck - exhibited higher total ventilation than their low-altitude counterparts, and yellow-billed pintail exhibited greater increases in pulmonary O2 extraction in severe hypoxia. In contrast, three other high-altitude taxa - Andean ruddy duck, Andean cinnamon teal and speckled teal - had similar or slightly reduced total ventilation and pulmonary O2 extraction compared with low-altitude relatives. Arterial O2 saturation (SaO2 ) was elevated in yellow-billed pintails at moderate levels of hypoxia, but there were no differences in SaO2  in other high-altitude taxa compared with their close relatives. This finding suggests that improvements in SaO2  in hypoxia can require increases in both breathing and haemoglobin-O2 affinity, because the yellow-billed pintail was the only high-altitude duck with concurrent increases in both traits compared with its low-altitude relative. Overall, our results suggest that distinct physiological strategies for coping with hypoxia can exist across different high-altitude lineages, even among those inhabiting very similar high-altitude habitats.


Assuntos
Aclimatação , Altitude , Temperatura Corporal/fisiologia , Patos/fisiologia , Animais , Feminino , Hipóxia , Masculino , Oregon , Consumo de Oxigênio/fisiologia , Peru , Respiração
4.
Physiol Biochem Zool ; 91(3): 859-867, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513620

RESUMO

Hypoxia at high altitudes constrains O2 supply to support metabolism, thermoregulation in the cold, and exercise. High-altitude natives that somehow overcome this challenge-who live, reproduce, and sometimes perform impressive feats of exercise at high altitudes-are a powerful group in which to study the evolution of physiological systems underlying hypoxia resistance. Here, we sought to determine whether a common pulse oximetry system for rodents (MouseOx Plus) can be used reliably in studies of high-altitude birds by examining the hypoxia responses of the Andean goose. We compared concurrent measurements of heart rate obtained using pulse oximetry versus electrocardiography. We also compared our measurements of peripheral arterial O2 saturation (SaO2) in uncannulated birds with published data collected from blood samples in birds that were surgically implanted arterial cannulae. Responses to acute hypoxia were measured during stepwise reductions in inspired partial pressure of O2. Andean geese exhibited very modest breathing and heart rate responses to hypoxia but were nevertheless able to maintain normal O2 consumption rates during severe hypoxia exposure down to 5 kPa O2. There were some minor quantitative differences between uncannulated and cannulated birds, which suggest that surgery, cannulation, and/or other sources of variability between studies had modest effects on the hypoxic ventilatory response, heart rate, blood hemoglobin, and hematocrit. Nevertheless, measurements of heart rate and SaO2 by pulse oximetry had small standard errors and were generally concordant and well correlated with measurements using other techniques. We conclude that the MouseOx Plus pulse oximetry system can be a valuable tool for studying the cardiorespiratory physiology of waterfowl without the deleterious effects of surgery/cannulation.


Assuntos
Adaptação Fisiológica/fisiologia , Altitude , Anseriformes/sangue , Oximetria/veterinária , Consumo de Oxigênio/fisiologia , Animais , Anseriformes/fisiologia , Oximetria/métodos , Reprodutibilidade dos Testes
5.
J Comp Physiol B ; 187(1): 117-133, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27461227

RESUMO

Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O2 supply depends on the ability to avoid O2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O2 supply and utilization. Fish were instrumented with opercular catheters to measure the O2 tension (PO2) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O2 loss, as reflected by higher PO2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O2 binding affinity when sampled in normoxia (P50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas-exchange capacity, may help minimize branchial O2 loss in armoured catfish while air breathing in aquatic hypoxia.


Assuntos
Peixes-Gato/metabolismo , Peixes-Gato/fisiologia , Brânquias/fisiologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Ar , Animais , Encéfalo/metabolismo , Peixes-Gato/anatomia & histologia , Citrato (si)-Sintase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/anatomia & histologia , Brânquias/ultraestrutura , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , Microscopia Eletrônica de Varredura , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Consumo de Oxigênio , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Piruvato Quinase/metabolismo , Respiração
7.
Am J Physiol Regul Integr Comp Physiol ; 297(4): R1066-74, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19657102

RESUMO

Bar-headed geese fly at altitudes of up to 9,000 m on their biannual migration over the Himalayas. To determine whether the flight muscle of this species has evolved to facilitate exercise at high altitude, we compared the respiratory properties of permeabilized muscle fibers from bar-headed geese and several low-altitude waterfowl species. Respiratory capacities were assessed for maximal ADP stimulation (with single or multiple inputs to the electron transport system) and cytochrome oxidase excess capacity (with an exogenous electron donor) and were generally 20-40% higher in bar-headed geese when creatine was present. When respiration rates were extrapolated to the entire pectoral muscle mass, bar-headed geese had a higher mass-specific aerobic capacity. This may represent a surplus capacity that counteracts the depressive effects of hypoxia on mitochondrial respiration. However, there were no differences in activity for mitochondrial or glycolytic enzymes measured in homogenized muscle. The [ADP] leading to half-maximal stimulation (K(m)) was approximately twofold higher in bar-headed geese (10 vs. 4-6 microM), and, while creatine reduced K(m) by 30% in this species, it had no effect on K(m) in low-altitude birds. Mitochondrial creatine kinase may therefore contribute to the regulation of oxidative phosphorylation in flight muscle of bar-headed geese, which could promote efficient coupling of ATP supply and demand. However, this was not based on differences in creatine kinase activity in isolated mitochondria or homogenized muscle. The unique differences in bar-headed geese existed without prior exercise or hypoxia exposure and were not a result of phylogenetic history, and may, therefore, be important evolutionary specializations for high-altitude flight.


Assuntos
Altitude , Migração Animal , Patos/fisiologia , Metabolismo Energético , Voo Animal , Gansos/fisiologia , Contração Muscular , Músculos Peitorais/metabolismo , Aclimatação , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Evolução Biológica , Respiração Celular , Creatina/metabolismo , Creatina Quinase Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glicólise , Cinética , Mitocôndrias Musculares/metabolismo , Fosforilação Oxidativa , Músculos Peitorais/enzimologia , Ácido Succínico/metabolismo
8.
J Exp Biol ; 211(Pt 15): 2450-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18626079

RESUMO

We have explored the molecular and physiological responses of the euryhaline killifish Fundulus heteroclitus to transfer from brackish water (10% seawater) to 100% seawater for 12 h, 3 days or 7 days. Plasma [Na+] and [Cl-] were unchanged after transfer, and plasma cortisol underwent a transient increase. Na+/K+-ATPase activity increased 1.5-fold in the gills and opercular epithelium at 7 days (significant in gills only), responses that were preceded by three- to fourfold increases in Na+/K+-ATPase alpha(1a) mRNA expression. Expression of Na+/K+/2Cl- cotransporter 1, cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, Na+/H+-exchanger 3 (significant in opercular epithelium only) and carbonic anhydrase II mRNA also increased two- to fourfold after transfer. Drinking rate increased over twofold after 12 h and remained elevated for at least 7 days. Surprisingly, net rates of water and ion absorption measured in vitro across isolated intestines decreased approximately 50%, possibly due to reduced salt demands from the diet in seawater, but water absorption capacity still exceeded the drinking rate. Changes in bulk water absorption were well correlated with net ion absorption, and indicated that slightly hyperosmotic solutions (>or=298 mmol l(-1)) were transported. There were no reductions in unidirectional influx of Na+ from luminal to serosal fluid or intestinal Na+/K+-ATPase activity after transfer. Overall, our results indicate that gill and opercular epithelia function similarly at a molecular level in seawater, in contrast to their divergent function in freshwater, and reveal unexpected changes in intestinal function. As such they provide further insight into the mechanisms of euryhalinity in killifish.


Assuntos
Fundulidae/fisiologia , Água do Mar , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Cloretos/sangue , Comportamento de Ingestão de Líquido , Epitélio/enzimologia , Fundulidae/sangue , Regulação Enzimológica da Expressão Gênica , Brânquias/enzimologia , Hidrocortisona/sangue , Absorção Intestinal , Intestinos/enzimologia , Transporte de Íons , Sódio/sangue , ATPase Trocadora de Sódio-Potássio/metabolismo , Água/metabolismo
9.
J Exp Biol ; 209(Pt 20): 4040-50, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17023598

RESUMO

We have explored intestinal function in the euryhaline killifish Fundulus heteroclitus after transfer from brackish water (10% seawater) to fresh water. Plasma Na+ and Cl- concentrations fell at 12 h post-transfer, but recovered by 7 days. Drinking rate decreased substantially at 12 h (32% of control value) and remained suppressed after 3 and 7 days in fresh water (34 and 43%). By contrast, there was a transient increase in the capacity for water absorption measured across isolated intestines in vitro (3.3- and 2.6-fold at 12 h and 3 days), which returned to baseline after 7 days. These changes in water absorption could be entirely accounted for by changes in net ion flux: there was an extremely strong correlation (R2=0.960) between water absorption and the sum of net Na+ and net Cl- fluxes (3.42+/-0.10 microl water micromol(-1) ion). However, enhanced ion transport across the intestine in fresh water would probably not increase water uptake in vivo, because the drinking rate was far less than the capacity for water absorption across the intestine. The increased intestinal ion absorption after freshwater transfer may instead serve to facilitate ion absorption from food when it is present in the gut. Modulation of net ion flux occurred without changes in mRNA levels of many ion transporters (Na+/K+-ATPase alpha(1a), carbonic anhydrase 2, CFTR Cl- channel, Na+/K+/2Cl- cotransporter 2, and the signalling protein 14-3-3a), and before a measured increase in Na+/K+-ATPase activity at 3 days, suggesting that there is some other mechanism responsible for increasing ion transport. Interestingly, net Cl- flux always exceeded net Na+ flux, possibly to help maintain Cl- balance and/or facilitate bicarbonate excretion. Our results suggest that intestinal NaCl absorption from food is important during the period of greatest ionic disturbance after transfer to fresh water, and provide further insight into the mechanisms of euryhalinity in killifish.


Assuntos
Fundulidae/fisiologia , Animais , Transporte Biológico Ativo , Ingestão de Líquidos/fisiologia , Água Doce , Fundulidae/genética , Expressão Gênica , Homeostase , Hidrocortisona/sangue , Intestinos/fisiologia , Transporte de Íons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Água/metabolismo , Equilíbrio Hidroeletrolítico
10.
J Comp Physiol B ; 175(7): 499-510, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16088394

RESUMO

We have explored the possible mechanisms by which mineralocorticoid (MR) and glucocorticoid (GR) receptors regulate the response to freshwater transfer in the gills of the euryhaline killifish Fundulus heteroclitus. Killifish were implanted with RU486 (GR antagonist) or spironolactone (MR antagonist) at doses of 0.1-1.0 mg g(-1), and subsequently transferred from 10 per thousand brackish water to freshwater. Compared to brackish water sham fish, mRNA expression of CFTR and NKCC1 decreased in the gills of sham fish transferred to freshwater, whereas Na(+), K(+)-ATPase alpha(1a) mRNA expression and alpha protein abundance, as well as cell proliferation (detected using BrdU) increased. Spironolactone inhibited the normal increase in cell proliferation and Na(+), K(+)-ATPase expression after freshwater transfer. RU486 increased plasma cortisol levels and may have slightly inhibited Na(+), K(+)-ATPase activity, but did not change alpha(1a ) expression. RU486 had no effect on cell proliferation in the non-lamellar region of the gills, but increased proliferation in the lamellar region. Neither antagonist inhibited the suppression of CFTR or NKCC1 expression after freshwater transfer. Glucocorticoid receptor expression was reduced in all sham and antagonist treatments compared to untreated controls, but no other consistent differences were observed. The effects of spironolactone suggest that MR is important for regulating ion transport in killifish gills after freshwater transfer.


Assuntos
Fundulidae/fisiologia , Adaptação Fisiológica , Animais , Proliferação de Células/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Água Doce , Fundulidae/genética , Expressão Gênica/efeitos dos fármacos , Brânquias/citologia , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Transporte de Íons/efeitos dos fármacos , Mifepristona/farmacologia , Antagonistas de Receptores de Mineralocorticoides , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/fisiologia , Receptores de Mineralocorticoides/fisiologia , Água do Mar , Simportadores de Cloreto de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Espironolactona/farmacologia
11.
J Exp Biol ; 208(Pt 14): 2719-29, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16000541

RESUMO

We have explored the molecular basis for differences in physiological function between the gills and opercular epithelium of the euryhaline killifish Fundulus heteroclitus. These tissues are functionally similar in seawater, but in freshwater the gills actively absorb Na+ but not Cl-, whereas the opercular epithelium actively absorbs Cl- but not Na+. These differences in freshwater physiology are likely due to differences in absolute levels of gene expression (measured using real-time PCR), as several proteins important for Na+ transport, namely Na+,H+-exchanger 2 (NHE2), carbonic anhydrase 2 (CA2), Na+,HCO3- cotransporter 1, and V-type H+-ATPase, were expressed at 3- to over 30-fold higher absolute levels in the gills. In gills, transfer from 10% seawater to freshwater increased the activity of Na+,K+-ATPase by twofold (from 12 h to 7 days), increased the expression of NHE2 (at 12 h) and CA2 (from 12 h to 7 days), and decreased the expression of NHE3 (from 12 h to 3 days). In opercular epithelium, NHE2 was not expressed; furthermore, Na+,K+-ATPase activity was unchanged after transfer to freshwater, CA2 mRNA levels decreased, and NHE3 levels increased. Consistent with their functional similarities in seawater, killifish gills and opercular epithelium expressed Na+,K+-ATPase alpha 1a, Na+,K+,2Cl- cotransporter 1 (NKCC1), cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and the signalling protein 14-3-3a at similar absolute levels. Furthermore, NKCC1 and CFTR were suppressed equally in each tissue after freshwater transfer, and 14-3-3a mRNA increased in both. These results provide insight into the mechanisms of ion transport by killifish gills and opercular epithelia, and demonstrate a potential molecular basis for the differences in physiological function between these two organs.


Assuntos
Cloretos/metabolismo , Fundulidae/genética , Fundulidae/fisiologia , Expressão Gênica , Brânquias/metabolismo , Sódio/metabolismo , Análise de Variância , Animais , Sequência de Bases , Transporte Biológico Ativo/fisiologia , Anidrase Carbônica II/metabolismo , Clonagem Molecular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Primers do DNA , DNA Complementar/genética , Epitélio/metabolismo , Água Doce , Fundulidae/metabolismo , Transporte de Íons/fisiologia , Dados de Sequência Molecular , Nova Escócia , ATPases Translocadoras de Prótons/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Simportadores de Sódio-Bicarbonato/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-15953746

RESUMO

Previous research has suggested that northern populations of the euryhaline killifish (Fundulus heteroclitus) are better adapted to freshwater environments than their southern counterparts. In this study, we examined whether this adaptation has come at an ionoregulatory cost in seawater, by comparing published data for northern killifish to newly acquired data on the molecular responses of southern killifish to seawater transfer. After abrupt transfer from brackish water (10 per thousand) to seawater, Na,K-ATPase activity, Na,K-ATPase alpha(1a) mRNA expression, and NKCC1 mRNA expression increased 1 and 4 days after transfer in the gills of southern fish (by 2-3-fold), but increased at 1 day and not 4 days after transfer in northern fish. Small increases in mRNA expression were observed in both populations at 14 days. CFTR expression also increased in southern and northern fish at 1 and 4 days into seawater, and was also elevated at 14 days in northern fish. Because fish from both southern and northern populations maintained plasma Na(+) and Cl(-) balance after seawater transfer, the differences in activity and expression could not have been caused by differences in plasma ion levels. Instead, some other regulatory factor may account for the differences in expression between populations. This study shows that freshwater adaptation in northern populations of killifish has not necessarily come at a significant ionoregulatory cost in seawater, but has altered the molecular responses of their gills to seawater transfer compared to southern killifish.


Assuntos
Fundulidae/genética , Expressão Gênica/fisiologia , Brânquias/fisiologia , Água do Mar , ATPase Trocadora de Sódio-Potássio/biossíntese , Adaptação Biológica/fisiologia , Animais , Cloretos/sangue , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Água Doce , Sódio/sangue , Simportadores de Cloreto de Sódio-Potássio/biossíntese , Membro 2 da Família 12 de Carreador de Soluto , Especificidade da Espécie
13.
J Exp Biol ; 207(Pt 19): 3399-410, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15326216

RESUMO

We examined intraspecific variation in ionoregulatory physiology within euryhaline killifish, Fundulus heteroclitus, to understand possible mechanisms of freshwater adaptation in fish. Pronounced differences in freshwater tolerance existed between northern (2% mortality) and southern (19% mortality) killifish populations after transfer from brackish water (10 g l(-1)) to freshwater. Differences in Na(+) regulation between each population might partially account for this difference in tolerance, because plasma Na(+) was decreased for a longer period in southern survivors than in northerns. Furthermore, northern fish increased Na(+)/K(+)-ATPase mRNA expression and activity in their gills to a greater extent 1-14 days after transfer than did southerns, which preceded higher whole-body net flux and unidirectional influx of Na(+) at 14 days. All observed differences in Na(+) regulation were small, however, and probably cannot account for the large differences in mortality. Differences in Cl(-) regulation also existed between populations. Plasma Cl(-) was maintained in northern fish, but in southerns, plasma Cl(-) decreased rapidly and remained low for the duration of the experiment. Correspondingly, net Cl(-) loss from southern fish remained high after transfer, while northerns eliminated Cl(-) loss altogether. Elevated Cl(-) loss from southern fish in freshwater was possibly due to a persistence of seawater gill morphology, as paracellular permeability (indicated by extrarenal clearance rate of PEG-4000) and apical crypt density in the gills (detected using scanning electron microscopy) were both higher than in northern fish. These large differences in the regulation of Cl(-) balance probably contributed to the marked differences in mortality after freshwater transfer. Glomerular filtration rate and urination frequency were also lower in southerns. Taken together, these data suggest that northern killifish are better adapted to freshwater environments and that minimizing Cl(-) imbalance appears to be the key physiological difference accounting for their greater freshwater tolerance.


Assuntos
Adaptação Fisiológica , Fundulidae/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Análise de Variância , Animais , Cloretos/sangue , Água Doce , Geografia , Brânquias/metabolismo , Brânquias/ultraestrutura , Taxa de Filtração Glomerular , Microscopia Eletrônica de Varredura , New Hampshire , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Contagem de Cintilação , Sódio/sangue , Especificidade da Espécie , Espectrofotometria Atômica , Trítio
14.
Am J Physiol Cell Physiol ; 287(2): C300-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15044150

RESUMO

Maintenance of ion balance requires that ionoregulatory epithelia modulate ion flux in response to internal or environmental osmotic challenges. We have explored the basis of this functional plasticity in the gills of the euryhaline killifish Fundulus heteroclitus. The expression patterns of several genes encoding ion transport proteins were quantified after transfer from near-isosmotic brackish water [10 parts/thousand (ppt)] to either freshwater (FW) or seawater (SW). Many changes in response to SW transfer were transient. Increased mRNA expression occurred 1 day after transfer for Na(+)-K(+)-ATPase-alpha(1a) (3-fold), Na(+)-K(+)-2Cl(-)-cotransporter 1 (NKCC1) (3-fold), and glucocorticoid receptor (1.3-fold) and was paralleled by elevated Na(+)-K(+)-ATPase activity (2-fold). The transient increase in NKCC1 mRNA expression was followed by a later 2-fold rise in NKCC protein abundance. In contrast to the other genes studied in the present work, mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel generally remained elevated (2-fold) in SW. No change in protein abundance was detected, however, suggesting posttranscriptional regulation. The responses to FW transfer were quite different from those to SW transfer. In particular, FW transfer increased Na(+)-K(+)-ATPase-alpha(1a) mRNA expression and Na(+)-K(+)-ATPase activity to a greater extent than did SW transfer but had no effect on V-type H(+)-ATPase expression, supporting the current suggestion that killifish gills transport Na(+) via Na(+)/H(+) exchange. These findings demonstrate unique patterns of ion transporter expression in killifish gills after salinity transfer and illustrate important mechanisms of functional plasticity in ion-transporting epithelia.


Assuntos
Fundulidae/fisiologia , Brânquias/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Expressão Gênica/fisiologia , Hidrocortisona/sangue , ATPases Translocadoras de Prótons/genética , RNA Mensageiro/análise , Receptores de Glucocorticoides/genética , Sódio/sangue , Cloreto de Sódio , Simportadores de Cloreto de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/genética , Membro 2 da Família 12 de Carreador de Soluto , ATPases Vacuolares Próton-Translocadoras/genética
15.
Aquat Toxicol ; 65(2): 171-85, 2003 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-12946617

RESUMO

The present study investigated both the effects of cadmium on the social interactions of rainbow trout and the differential accumulation of waterborne cadmium among social ranks of fish. Fish exposed to waterborne cadmium concentrations of 2 microg l(-1) for 24 h, followed by a 1, 2 or 3 day depuration period in clean water, had a decreased ability to compete with non-exposed fish. However, the competitive ability of exposed fish given a 5 day depuration period was not significantly impaired. Cadmium accumulated in the olfactory apparatus of fish exposed to waterborne cadmium for 24 h and decreased significantly only after 5 days depuration in clean water. Among groups of ten fish held in stream tanks, where all fish were exposed to cadmium, there were significant effects on social behaviour and growth rate. Dominance hierarchies formed faster among fish exposed to cadmium than among control fish, and overall growth rates were higher in the cadmium treatment. In groups of ten fish, social status also affected tissue accumulation of cadmium during waterborne exposure, with dominant fish accumulating more cadmium at the gill. In conclusion, exposure to low levels of cadmium, affects the social behaviour of fish, in part due to accumulation in the olfactory apparatus, and dominant fish accumulate more gill cadmium than subordinates during chronic waterborne exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Doenças dos Peixes/induzido quimicamente , Oncorhynchus mykiss , Poluentes Químicos da Água/intoxicação , Animais , Carga Corporal (Radioterapia) , Peso Corporal/efeitos dos fármacos , Intoxicação por Cádmio/metabolismo , Intoxicação por Cádmio/parasitologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/psicologia , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Modelos Lineares , Olfato/efeitos dos fármacos , Comportamento Social , Predomínio Social , Poluentes Químicos da Água/metabolismo
16.
J Exp Biol ; 206(Pt 11): 1779-90, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12727999

RESUMO

Alarm substance is a chemical signal released from fish skin epithelial cells after a predator causes skin damage. When other prey fish detect alarm substance by olfaction, they perform stereotypical predator-avoidance behaviours to decrease predation risk. The objective of this study was to explore the effect of sublethal cadmium (Cd) exposure on the behavioural and physiological responses of juvenile rainbow trout (Oncorhynchus mykiss) to alarm substance. Waterborne exposure to 2 microg Cd l(-1) for 7 days eliminated normal antipredator behaviours exhibited in response to alarm substance, whereas exposures of shorter duration or lower concentration had no effect on normal behaviour. Furthermore, dietary exposure to 3 microg Cd g(-1) in the food for 7 days, which produced the same whole-body Cd accumulation as waterborne exposure to 2 microg l(-1), did not alter normal behaviour, indicating that an effect specific to waterborne exposure alone (i.e. Cd accumulation in the olfactory system) results in behavioural alteration. Whole-body phosphor screen autoradiography of fish exposed to (109)Cd demonstrated that Cd deposition in the olfactory system (rosette, nerve and bulb) during waterborne exposure was greater than in all other organs of accumulation except the gill. However, Cd could not be detected in the brain. A short-term elevation in plasma cortisol occurred in response to alarm substance under control conditions. Cd exposures of 2 microg l(-1) waterborne and 3 microg g(-1) dietary for 7 days both inhibited this plasma cortisol elevation but did not alter baseline cortisol levels. Our results suggest that exposure to waterborne Cd at environmentally realistic levels (2 microg l(-1)) can disrupt the normal behavioural and physiological responses of fish to alarm substance and can thereby alter predator-avoidance strategies, with potential impacts on aquatic fish communities.


Assuntos
Radioisótopos de Cádmio , Cádmio/farmacologia , Reação de Fuga/efeitos dos fármacos , Oncorhynchus mykiss/metabolismo , Pele/metabolismo , Animais , Autorradiografia , Cádmio/farmacocinética , Hidrocortisona/sangue , Técnicas In Vitro , Isótopos , Bulbo Olfatório/metabolismo , Oncorhynchus mykiss/fisiologia , Feromônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA