Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 53(38): 6092-102, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25225878

RESUMO

The putative membrane protein U24 from HHV-6A shares a seven-residue sequence identity (which includes a PxxP motif) with myelin basic protein (MBP), a protein responsible for the compaction of the myelin sheath in the central nervous system. U24 from HHV-6A also shares a PPxY motif with U24 from the related virus HHV-7, allowing them both to block early endosomal recycling. Recently, MBP has been shown to have protein-protein interactions with a range of proteins, including proteins containing SH3 domains. Given that this interaction is mediated by the proline-rich segment in MBP, and that similar proline-rich segments are found in U24, we investigate here whether U24 also interacts with SH3 domain-containing proteins and what the nature of that interaction might be. The implications of a U24-Fyn tyrosine kinase SH3 domain interaction are discussed in terms of the hypothesis that U24 may function like MBP through molecular mimicry, potentially contributing to the disease state of multiple sclerosis or other demyelinating disorders.


Assuntos
Herpesvirus Humano 6/metabolismo , Herpesvirus Humano 7/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Deleção de Genes , Regulação Viral da Expressão Gênica , Herpesvirus Humano 6/genética , Herpesvirus Humano 7/genética , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-fyn/química
2.
Chem Biol ; 17(9): 970-80, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20851346

RESUMO

The structure and function of the synthetic innate defense regulator peptide 1018 was investigated. This 12 residue synthetic peptide derived by substantial modification of the bovine cathelicidin bactenecin has enhanced innate immune regulatory and moderate direct antibacterial activities. The solution state NMR structure of 1018 in zwitterionic dodecyl phosphocholine (DPC) micelles indicated an α-helical conformation, while secondary structures, based on circular dichroism measurements, in anionic sodium dodecyl sulfate (SDS) and phospholipid vesicles (POPC/PG in a 1:1 molar ratio) and simulations revealed that 1018 can adopt a variety of folds, tailored to its different functions. The structural data are discussed in light of the ability of 1018 to potently induce chemokine responses, suppress the LPS-induced TNF-α response, and directly kill both Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Fatores Imunológicos/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bovinos , Dicroísmo Circular , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Micelas , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estrutura Secundária de Proteína , Relação Quantitativa Estrutura-Atividade , Dodecilsulfato de Sódio/química , Fator de Necrose Tumoral alfa/metabolismo
3.
Biochemistry ; 49(2): 287-96, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20000438

RESUMO

The fusion peptide of TBEV is a short segment of the envelope protein that mediates viral and host cell membrane fusion at acidic pH. Previous studies on the E protein have shown that mutations at L107 have an effect on fusogenic activity. Structural studies have also suggested that during the fusion process the E protein rearranges to form a trimer. In the present study, a number of short peptides were synthesized, and their structure/activity was examined: (1) monomers consisting of residues 93-113 of the wild-type E protein with Leu at position 107 (WT) and two mutants, namely, L107F and L107T; (2) a monomer consisting of residues 93-113 of the E protein with a C105A mutation (TFPmn); (3) a trimer consisting of three monomers described in (2), linked at the C-terminus via 1 Lys (TFPtr); (4) a monomer consisting of residues 93-113 of the E protein plus six additional Lys at the C-terminus; and (5) a trimer consisting of three monomers described in (3), linked via the side chain of the sixth lysine. The secondary structure content of all peptides was investigated using circular dichroism (CD). Approximately seven of the residues were in beta-strand conformation, in the presence of POPC/POPE/cholesterol. The structures did not depend on pH significantly. The fusogenicity of the peptides was measured by FRET and photon correlation spectroscopy. The data suggest that TFPtr is the most fusogenic at acidic pH and that the mutation from L107 to T reduces activity. Molecular dynamics simulations of WT, L107T, and L107F suggest that this reduction in activity may be related to the fact that the mutations disrupt trimer stability. Finally, tryptophan fluorescence experiments were used to localize the peptides in the membrane. It was found that WT, L107F, TFPmn, and TFPtr could penetrate better into the acyl chain region of the lipids than the other peptides tested. The implications of these results on the fusion mechanism of TBEV E protein will be presented.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Peptídeos/química , Proteínas Virais/química , Internalização do Vírus , Sequência de Aminoácidos , Simulação por Computador , Cinética , Proteínas de Fusão de Membrana/química , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Triptofano/análise
4.
Eur Biophys J ; 37(4): 421-33, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17968536

RESUMO

Daptomycin, a cyclic anionic lipopeptide antibiotic, whose three-dimensional structure was recently solved using solution state NMR (Ball et al. 2004; Jung et al. 2004; Rotondi and Gierasch 2005), requires calcium for function. To date, the exact nature of the interaction between divalent cations, such as Ca(2+) or Mg(2+), has not been fully characterized. It has, however, been suggested that addition of Ca(2+) to daptomycin in a 1:1 molar ratio induces aggregation. Moreover, it has been suggested that certain residues, e.g. Asp3 and Asp7, which are essential for activity (Grunewald et al. 2004; Kopp et al. 2006), may also be important for Ca(2+) binding (Jung et al. 2004). In this work, we have tried: (1) to further pinpoint how Ca(2+) affects daptomycin structure/oligomerization using analytical ultracentrifugation; and (2) to determine whether a specific calcium binding site exists, based on one-dimensional (13)C NMR spectra and molecular dynamics (MD) simulations. The centrifugation results indicated that daptomycin formed micelles of between 14 and 16 monomers in the presence of a 1:1 molar ratio of Ca(2+) and daptomycin. The (13)C NMR data indicated that addition of calcium had a significant effect on the Trp1 and Kyn13 residues, indicating that either calcium binds in this region or that these residues may be important for oligomerization. Finally, the molecular dynamics simulation results indicated that the conformational change of daptomycin upon calcium binding might not be as significant as originally proposed. Similar studies on the divalent cation Mg(2+) are also presented. The implication of these results for the biological function of daptomycin is discussed.


Assuntos
Anti-Infecciosos/química , Cátions Bivalentes , Daptomicina/química , Algoritmos , Anti-Infecciosos/análise , Sítios de Ligação , Cálcio/química , Simulação por Computador , Daptomicina/análise , Magnésio/química , Espectroscopia de Ressonância Magnética , Micelas , Modelos Estatísticos , Conformação Molecular , Peptídeos/química , Conformação Proteica , Ultracentrifugação
5.
Proteins ; 64(3): 719-29, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16783791

RESUMO

We have investigated the structure and dynamics of three cavitand-based four-helix bundles (caviteins) by computer simulation. In these systems, designed de novo, each of the four helices contain the identical basis sequence EELLKKLEELLKKG (N1). Each cavitein consists of a rigid macrocycle (cavitand) with four aryl linkages, to each of which is connected an N1 peptide by means of a linker peptide. The three caviteins studied here differ only in the linker peptide, which consist of one, two, or three glycine residues. Previous experimental work has shown that these systems exhibit very different behavior in terms of stability and oligomerization states despite the small differences in the linker peptide. Given that to date no three-dimensional structure is available for these caviteins, we have undertaken a series of molecular dynamics (MD) simulations in explicit water to try to rationalize the large differences in the experimentally observed behavior of these systems. Our results provide insight, for the first time, into why and how the cavitein with a single glycine linker forms dimers. In addition, our results indicate why although the two- and three-glycine-linked caviteins have similar stabilities, they have different native-like characteristics: the cavitein with three glycines can form a supercoiled helix, whereas the one with two glycines cannot. These findings may provide a useful guide in the rational de novo design of novel proteins with finely tunable structures and functions in the future.


Assuntos
Simulação por Computador , Peptídeos/química , Sequência de Aminoácidos , Aminoácidos/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA