Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biomolecules ; 13(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37892136

RESUMO

ATP12A encodes the catalytic subunit of the non-gastric proton pump, which is expressed in many epithelial tissues and mediates the secretion of protons in exchange for potassium ions. In the airways, ATP12A-dependent proton secretion contributes to complex mechanisms regulating the composition and properties of the fluid and mucus lining the respiratory epithelia, which are essential to maintain the airway host defense and the respiratory health. Increased expression and activity of ATP12A in combination with the loss of other balancing activities, such as the bicarbonate secretion mediated by CFTR, leads to excessive acidification of the airway surface liquid and mucus dysfunction, processes that play relevant roles in the pathogenesis of cystic fibrosis and other chronic inflammatory respiratory disorders. In this review, we summarize the findings dealing with ATP12A expression, function, and modulation in the airways, which led to the consideration of ATP12A as a potential therapeutic target for the treatment of cystic fibrosis and other airway diseases; we also highlight the current advances and gaps regarding the development of therapeutic strategies aimed at ATP12A inhibition.


Assuntos
Fibrose Cística , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Doenças Respiratórias/tratamento farmacológico , Transporte de Íons , Prótons , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/uso terapêutico
2.
Stem Cell Res ; 72: 103232, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37865062

RESUMO

Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel defective in cystic fibrosis (CF). Several CFTR mutations are causative of CF, among which G542X is a nonsense mutation introducing a premature stop codon which prevents CFTR protein synthesis. We generated a new iPSC line from nasal cells carrying G542X homozygous mutation for CFTR: IGGi002A. This cell line has normal female karyotype, express pluripotency markers and could differentiate into three germ layers in vitro. This iPSC line may be used for disease modeling (cell differentiation and organoid formation) and development of personalized treatments by genome editing or pharmacological screening.


Assuntos
Fibrose Cística , Células-Tronco Pluripotentes Induzidas , Humanos , Feminino , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Códon sem Sentido
3.
Sci Rep ; 13(1): 7604, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165082

RESUMO

F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF.


Assuntos
Fibrose Cística , Quinolinas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais de Cloreto/genética , Quinolinas/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Mutação
4.
Cerebellum ; 22(2): 206-222, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218524

RESUMO

Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.


Assuntos
Encéfalo , Malformações do Sistema Nervoso , Animais , Feminino , Humanos , Camundongos , Cerebelo/anormalidades , Neurônios
5.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36219481

RESUMO

The fluid covering the surface of airway epithelia represents a first barrier against pathogens. The chemical and physical properties of the airway surface fluid are controlled by the activity of ion channels and transporters. In cystic fibrosis (CF), loss of CFTR chloride channel function causes airway surface dehydration, bacterial infection, and inflammation. We investigated the effects of IL-17A plus TNF-α, 2 cytokines with relevant roles in CF and other chronic lung diseases. Transcriptome analysis revealed a profound change with upregulation of several genes involved in ion transport, antibacterial defense, and neutrophil recruitment. At the functional level, bronchial epithelia treated in vitro with the cytokine combination showed upregulation of ENaC channel, ATP12A proton pump, ADRB2 ß-adrenergic receptor, and SLC26A4 anion exchanger. The overall result of IL-17A/TNF-α treatment was hyperviscosity of the airway surface, as demonstrated by fluorescence recovery after photobleaching (FRAP) experiments. Importantly, stimulation with a ß-adrenergic agonist switched airway surface to a low-viscosity state in non-CF but not in CF epithelia. Our study suggests that CF lung disease is sustained by a vicious cycle in which epithelia cannot exit from the hyperviscous state, thus perpetuating the proinflammatory airway surface condition.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Depuração Mucociliar , Interleucina-17/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Adrenérgicos/farmacologia , Células Epiteliais/metabolismo , Fibrose Cística/genética , Citocinas/metabolismo , ATPase Trocadora de Hidrogênio-Potássio
6.
STAR Protoc ; 3(2): 101419, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35664255

RESUMO

Here, we present a standardized protocol for isolation, maintenance, and polarization of the respiratory epithelial primary cells from patient samples acquired from nasal brushing, polyp specimens, or lung explants. This protocol generates a clearly defined polarized layer of epithelial cells on filters, with a good number of ciliated cells and a thin layer of mucus. We detail the steps for samples prepared from patients with cystic fibrosis as well as from subjects without cystic fibrosis.


Assuntos
Fibrose Cística , Pólipos , Fibrose Cística/patologia , Células Epiteliais/patologia , Humanos , Pulmão , Muco , Mucosa Nasal/patologia , Pólipos/patologia
7.
Hum Mutat ; 43(9): 1299-1313, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35607920

RESUMO

Alternative splicing (AS) is crucial for cell-type-specific gene transcription and plays a critical role in neuronal differentiation and synaptic plasticity. De novo frameshift variants in NOVA2, encoding a neuron-specific key splicing factor, have been recently associated with a new neurodevelopmental disorder (NDD) with hypotonia, neurological features, and brain abnormalities. We investigated eight unrelated individuals by exome sequencing (ES) and identified seven novel pathogenic NOVA2 variants, including two with a novel localization at the KH1 and KH3 domains. In addition to a severe NDD phenotype, novel clinical features included psychomotor regression, attention deficit-hyperactivity disorder (ADHD), dyspraxia, and urogenital and endocrinological manifestations. To test the effect of the variants on splicing regulation, we transfected HeLa cells with wildtype and mutant NOVA2 complementary DNA (cDNA). The novel variants NM_002516.4:c.754_756delCTGinsTT p.(Leu252Phefs*144) and c.1329dup p.(Lys444Glnfs*82) all negatively affected AS events. The distal p.(Lys444Glnfs*82) variant, causing a partial removal of the KH3 domain, had a milder functional effect leading to an intermediate phenotype. Our findings expand the molecular and phenotypic spectrum of NOVA2-related NDD, supporting the pathogenic role of AS disruption by truncating variants and suggesting that this is a heterogeneous condition with variable clinical course.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Processamento Alternativo , Células HeLa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Proteínas do Tecido Nervoso/genética , Antígeno Neuro-Oncológico Ventral , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Ligação a RNA/genética
8.
Biomolecules ; 12(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35204703

RESUMO

SLC26A9 belongs to the solute carrier family 26 (SLC26), which comprises membrane proteins involved in ion transport mechanisms. On the basis of different preliminary findings, including the phenotype of SlC26A9-deficient mice and its possible role as a gene modifier of the human phenotype and treatment response, SLC26A9 has emerged as one of the most interesting alternative targets for the treatment of cystic fibrosis (CF). However, despite relevant clues, some open issues and controversies remain. The lack of specific pharmacological modulators, the elusive expression reported in the airways, and its complex relationships with CFTR and the CF phenotype prevent us from conclusively understanding the contribution of SLC26A9 in human lung physiology and its real potential as a therapeutic target in CF. In this review, we summarized the various studies dealing with SLC26A9 expression, molecular structure, and function as an anion channel or transporter; its interaction and functional relationships with CFTR; and its role as a gene modifier and tried to reconcile them in order to highlight the current understanding and the gap in knowledge regarding the contribution of SLC26A9 to human lung physiology and CF disease and treatment.


Assuntos
Antiporters , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Transportadores de Sulfato , Animais , Antiporters/genética , Antiporters/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons , Camundongos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/uso terapêutico
9.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769402

RESUMO

Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Brônquios/efeitos dos fármacos , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/efeitos dos fármacos , Humanos
10.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919865

RESUMO

Neurofibromatosis type 1 (NF1) is a proteiform genetic condition caused by pathogenic variants in NF1 and characterized by a heterogeneous phenotypic presentation. Relevant genotype-phenotype correlations have recently emerged, but only few pertinent studies are available. We retrospectively reviewed clinical, instrumental, and genetic data from a cohort of 583 individuals meeting at least 1 diagnostic National Institutes of Health (NIH) criterion for NF1. Of these, 365 subjects fulfilled ≥2 NIH criteria, including 235 pediatric patients. Genetic testing was performed through cDNA-based sequencing, Next Generation Sequencing (NGS), and Multiplex Ligation-dependent Probe Amplification (MLPA). Uni- and multivariate statistical analysis was used to investigate genotype-phenotype correlations. Among patients fulfilling ≥ 2 NIH criteria, causative single nucleotide variants (SNVs) and copy number variations (CNVs) were detected in 267/365 (73.2%) and 20/365 (5.5%) cases. Missense variants negatively correlated with neurofibromas (p = 0.005). Skeletal abnormalities were associated with whole gene deletions (p = 0.05) and frameshift variants (p = 0.006). The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations (p = 0.031), whereas Lisch nodules (p = 0.05) and endocrinological disorders (p = 0.043) were associated with the c.6855C>A; p.(Y2285*) variant. We identified novel NF1 genotype-phenotype correlations and provided an overview of known associations, supporting their potential relevance in the implementation of patient management.

11.
Cells ; 9(9)2020 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933106

RESUMO

The airway epithelium contains ionocytes, a rare cell type with high expression of Forkhead Box I1 (FOXI1) transcription factor and Cystic Fibrosis Transmembrane conductance Regulator (CFTR), a chloride channel that is defective in cystic fibrosis (CF). Our aim was to verify if ionocyte development is altered in CF and to investigate the relationship between ionocytes and CFTR-dependent chloride secretion. We collected nasal cells by brushing to determine ionocyte abundance. Nasal and bronchial cells were also expanded in vitro and reprogrammed to differentiated epithelia for morphological and functional studies. We found a relatively high (~3%) ionocyte abundance in ex vivo nasal samples, with no difference between CF and control individuals. In bronchi, ionocytes instead appeared very rarely as previously reported, thus suggesting a possible proximal-distal gradient in human airways. The difference between nasal and bronchial epithelial cells was maintained in culture, which suggests an epigenetic control of ionocyte development. In the differentiation phase of the culture procedure, we used two media that resulted in a different pattern of CFTR expression: confined to ionocytes or more broadly expressed. CFTR function was similar in both conditions, thus indicating that chloride secretion equally occurs irrespective of CFTR expression pattern.


Assuntos
Brônquios/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Mucosa Nasal/metabolismo , Estudos de Casos e Controles , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Linhagem Celular , Meios de Cultura , Fibrose Cística/patologia , Fatores de Transcrição Forkhead/genética , Humanos , Transcriptoma , Transfecção
12.
Sci Adv ; 6(8): eaay9669, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32128418

RESUMO

F508del, the most frequent mutation causing cystic fibrosis (CF), results in mistrafficking and premature degradation of the CFTR chloride channel. Small molecules named correctors may rescue F508del-CFTR and therefore represent promising drugs to target the basic defect in CF. We screened a carefully designed chemical library to find F508del-CFTR correctors. The initial active compound resulting from the primary screening underwent extensive chemical optimization. The final compound, ARN23765, showed an extremely high potency in bronchial epithelial cells from F508del homozygous patients, with an EC50 of 38 picomolar, which is more than 5000-fold lower compared to presently available corrector drugs. ARN23765 also showed high efficacy, synergy with other types of correctors, and compatibility with chronic VX-770 potentiator. Besides being a promising drug, particularly suited for drug combinations, ARN23765 represents a high-affinity probe for CFTR structure-function studies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Mutantes/metabolismo , Preparações Farmacêuticas/metabolismo , Brônquios/patologia , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/química , Células Epiteliais/metabolismo , Ensaios de Triagem em Larga Escala , Humanos
13.
J Physiol ; 597(24): 5859-5878, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31622498

RESUMO

KEY POINTS: Eact is a putative pharmacological activator of TMEM16A. Eact is strongly effective in recombinant Fischer rat thyroid (FRT) cells but not in airway epithelial cells with endogenous TMEM16A expression. Transcriptomic analysis, gene silencing and functional studies in FRT cells reveal that Eact is actually an activator of the Ca2+ -permeable TRPV4 channel. In airway epithelial cells TRPV4 and TMEM16A are expressed in separate cell types. Intracellular Ca2+ elevation by TRPV4 stimulation leads to CFTR channel activation. ABSTRACT: TMEM16A is a Ca2+ -activated Cl- channel expressed in airway epithelial cells, particularly under conditions of mucus hypersecretion. To investigate the role of TMEM16A, we used Eact, a putative TMEM16A pharmacological activator. However, in contrast to purinergic stimulation, we found little effect of Eact on bronchial epithelial cells under conditions of high TMEM16A expression. We hypothesized that Eact is an indirect activator of TMEM16A. By a combination of approaches, including short-circuit current recordings, bulk and single cell RNA sequencing, intracellular Ca2+ imaging and RNA interference, we found that Eact is actually an activator of the Ca2+ -permeable TRPV4 channel and that the modest effect of this compound in bronchial epithelial cells is due to a separate expression of TMEM16A and TRPV4 in different cell types. Importantly, we found that TRPV4 stimulation induced activation of the CFTR Cl- channel. Our study reveals the existence of separate Ca2+ signalling pathways linked to different Cl- secretory processes.


Assuntos
Anoctamina-1/metabolismo , Sinalização do Cálcio , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mucosa Respiratória/metabolismo , Canais de Cátion TRPV/metabolismo , Potenciais de Ação , Animais , Anoctamina-1/genética , Benzamidas/farmacologia , Brônquios/citologia , Células Cultivadas , Células HEK293 , Humanos , Ratos , Ratos Endogâmicos F344 , Receptores Purinérgicos/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/fisiologia , Canais de Cátion TRPV/genética , Tiazóis/farmacologia
15.
Front Physiol ; 10: 694, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263421

RESUMO

Calcium-activated anion secretion is expected to ameliorate cystic fibrosis, a genetic disease that carries an anion secretory defect in exocrine tissues. Human patients and animal models of the disease that present a mild intestinal phenotype have been postulated to bear a compensatory calcium-activated anion secretion in the intestine. TMEM16A is calcium-activated anion channel whose presence in the intestinal epithelium is contradictory. We aim to test the functional expression of TMEM16A using animal models with Cftr and/or Tmem16a intestinal silencing. Expression of TMEM16A was studied in a wild type and intestinal Tmem16a knockout mice by mRNA-seq, mass-spectrometry, q-PCR, Western blotting and immunolocalization. Calcium-activated anion secretion was recorded in the ileum and proximal colon of these animals including intestinal Cftr knockout and double mutants with dual Tmem16a and Cftr intestinal ablation. Mucus homeostasis was studied by immune-analysis of Mucin-2 (Muc2) and survival curves were recorded. Tmem16a transcript was found in intestine. Nevertheless, protein was barely detected in colon samples. Electrophysiological measurements demonstrated that the intestinal deletion of Tmem16a did not change calcium-activated anion secretion induced by carbachol or ATP in ileum and proximal colon. Muc2 architecture was not altered by Tmem16a silencing as was observed when Cftr was deleted from mouse intestine. Tmem16a silencing neither affected animal survival nor modified the lethality observed in the intestinal Cftr-null mouse. Our results demonstrate that TMEM16A function in the murine intestine is not related to electrogenic calcium-activated anion transport and does not affect mucus homeostasis and survival of animals.

16.
Eur J Med Chem ; 180: 430-448, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326599

RESUMO

Deletion of phenylalanine at position 508 (F508del) in the CFTR protein, is the most common mutation causing cystic fibrosis (CF). F508del causes misfolding and rapid degradation of CFTR protein a defect that can be targeted with pharmacological agents termed "correctors". Correctors belong to various chemical classes but are generally small molecules based on nitrogen sulfur or oxygen heterocycles. The mechanism of action of correctors is generally unknown but there is experimental evidence that some of them can directly act on mutant CFTR improving folding and stability. Here we overview the characteristics of the various F508del correctors described so far to obtain indications on key chemical structures and modifications that are required for mutant protein rescue.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Pirimidinonas/farmacologia , Tiazóis/farmacologia , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação , Dobramento de Proteína/efeitos dos fármacos , Pirimidinonas/química , Tiazóis/química
17.
Exp Physiol ; 104(6): 866-875, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924990

RESUMO

NEW FINDINGS: What is the central question of this study? What is the precise subcellular localization of the epithelial sodium channel (ENaC) in human airway epithelium? What is the main finding and its importance? ENaC protein has an unexpected localization in the peripheral region of the apical membrane of bronchial epithelial cells, very close to tight junctions. This may be important for the mechanism of Na+ absorption ABSTRACT: The epithelial sodium channel (ENaC) has a key role in absorbing fluid across the human airway epithelium. Altered activity of ENaC may perturb the process of mucociliary clearance, thus impairing the innate defence mechanisms against microbial agents. The proteins forming ENaC are present on the apical membrane of the epithelium. However, their precise localization is unknown. In the present study, we used two antibodies recognizing the α and ß ENaC subunits. Both antibodies revealed a restricted localization of ENaC in the peripheral region of the apical membrane of cultured bronchial epithelial cells, close to but not overlapping with tight junctions. In contrast, the cystic fibrosis transmembrane conductance regulator chloride channel was more diffusely expressed on the whole apical membrane. Modulation of ENaC activity by aprotinin or elastase resulted in a decrease or increase in the peripheral localization, respectively. Our results suggest that sodium absorption is mainly occurring close to tight junctions where this cation may be rapidly expelled by the Na+ /K+ pump present in lateral membranes. This arrangement of channels and pumps may limit Na+ build-up in other regions of the cells.


Assuntos
Brônquios/metabolismo , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Mucosa Respiratória/metabolismo , Animais , Brônquios/citologia , Linhagem Celular , Membrana Celular/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Humanos , Ratos
18.
Hum Mutat ; 40(6): 742-748, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851139

RESUMO

Pharmacological rescue of mutant cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis (CF) depends on the specific defect caused by different mutation classes. We asked whether a patient with the rare p.Gly970Asp (c.2909G>A) mutation could benefit from CFTR pharmacotherapy since a similar missense mutant p.Gly970Arg (c.2908G>C) was previously found to be sensitive to potentiators in vitro but not in vivo. By complementary DNA transfection, we found that both mutations are associated with defective CFTR function amenable to pharmacological treatment. However, analysis of messenger RNA (mRNA) from patient's cells revealed that c.2908G>C impairs RNA splicing whereas c.2909G>A does not perturb splicing and leads to the expected p.Gly970Asp mutation. In agreement with these results, nasal epithelial cells from the p.Gly970Asp patient showed significant improvement of CFTR function upon pharmacological treatment. Our results underline the importance of controlling the effect of CF mutation at the mRNA level to determine if the pharmacotherapy of CFTR basic defect is appropriate.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Mutação Puntual , Códon , Fibrose Cística/metabolismo , Células HEK293 , Humanos , Fenótipo , Splicing de RNA , Transfecção
19.
Am J Pathol ; 189(2): 354-369, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448410

RESUMO

In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases. In α-sarcoglycanopathy, eATP effects may be further amplified because α-sarcoglycan extracellular domain binds eATP and displays an ecto-ATPase activity, thus controlling eATP concentration at the cell surface and attenuating the magnitude and/or the duration of eATP-induced signals. Herein, we show that in vivo blockade of the eATP/P2X purinergic pathway by a broad-spectrum P2X receptor-antagonist delayed the progression of the dystrophic phenotype in α-sarcoglycan-null mice. eATP blockade dampened the muscular inflammatory response and enhanced the recruitment of forkhead box protein P3-positive immunosuppressive regulatory CD4+ T cells. The improvement of the inflammatory features was associated with increased strength, reduced necrosis, and limited expression of profibrotic factors, suggesting that pharmacologic purinergic antagonism, altering the innate and adaptive immune component in muscle infiltrates, might provide a therapeutic approach to slow disease progression in α-sarcoglycanopathy.


Assuntos
Trifosfato de Adenosina/imunologia , Distrofia Muscular Animal , Miofibrilas , Sarcoglicanas/deficiência , Linfócitos T Reguladores , Trifosfato de Adenosina/genética , Animais , Cálcio/imunologia , Doença Crônica , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/patologia , Miofibrilas/imunologia , Miofibrilas/patologia , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/imunologia , Sarcoglicanas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
20.
JCI Insight ; 3(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333310

RESUMO

Proton secretion mediated by ATP12A protein on the surface of the airway epithelium may contribute to cystic fibrosis (CF) lung disease by favoring bacterial infection and airway obstruction. We studied ATP12A in fresh bronchial samples and in cultured epithelial cells. In vivo, ATP12A expression was found almost exclusively at the apical side of nonciliated cells of airway epithelium and in submucosal glands, with much higher expression in CF samples. This could be due to bacterial infection and inflammation, since treating cultured cells with bacterial supernatants or with IL-4 (a cytokine that induces goblet cell hyperplasia) increased the expression of ATP12A in nonciliated cells. This observation was associated with upregulation and translocation of ATP1B1 protein from the basal to apical epithelial side, where it colocalizes with ATP12A. ATP12A function was evaluated by measuring the pH of the apical fluid in cultured epithelia. Under resting conditions, CF epithelia showed more acidic values. This abnormality was minimized by inhibiting ATP12A with ouabain. Following treatment with IL-4, ATP12A function was markedly increased, as indicated by strong acidification occurring under bicarbonate-free conditions. Our study reveals potentially novel aspects of ATP12A and remarks its importance as a possible therapeutic target in CF and other respiratory diseases.


Assuntos
Brônquios/patologia , Fibrose Cística/patologia , Células Caliciformes/patologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Animais , Brônquios/citologia , Brônquios/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Colo/citologia , Colo/metabolismo , Fibrose Cística/imunologia , Fibrose Cística/cirurgia , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/genética , Humanos , Concentração de Íons de Hidrogênio , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos , Camundongos Knockout , Ouabaína/farmacologia , Permeabilidade , Potássio/metabolismo , Cultura Primária de Células , Inibidores da Bomba de Prótons/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA