Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Today (Kidlington) ; 62: 190-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938366

RESUMO

Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.

2.
Biotechnol Bioeng ; 117(8): 2504-2515, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32364622

RESUMO

Therapeutic proteins are utilized in a variety of clinical applications, but side effects and rapid in vivo clearance still present hurdles. An approach that addresses both drawbacks is protein encapsulation within in a polymeric nanoparticle, which is effective but introduces the additional challenge of destabilizing the nanoparticle shell in clinically relevant locations. This study examined the effects of crosslinking self-assembled poly(l-lysine)-grafted-poly(ethylene glycol) nanoparticles with redox-responsive 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP) to achieve nanoparticle destabilization in a reductive environment. The polymer-protein nanoparticles (DTSSP NPs) were formed through electrostatic self-assembly and crosslinked with DTSSP, which contains a glutathione-reducible disulfide. As glutathione is upregulated in various cancers, DTSSP NPs could display destabilization within cancer cells. A library of DTSSP NPs was formed with varying copolymer to protein (C:P) and crosslinker to protein (X:P) mass ratios and characterized by size and encapsulation efficiency. DTSSP NPs with a 7:1 C:P ratio and 2:1 X:P ratio were further characterized by stability in the presence proteases and reducing agents. DTSSP NPs fully encapsulated the model protein and displayed 81% protein release when incubated with 5 mM dithiothreitol for 12 hr. This study contributes to understanding stimulus-responsive crosslinking of polymeric nanoparticles and could be foundational to clinical administration of therapeutic proteins.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Polietilenoglicóis/química , Polilisina/química , Succinimidas/química , Animais , Reagentes de Ligações Cruzadas/química , Oxirredução , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA