Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nanomaterials (Basel) ; 14(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998754

RESUMO

In breast cancer, Targeted Axillary Dissection (TAD) allows for the selective excision of the sentinel lymph node (SLN) during primary tumor surgery. TAD consists of the resection of labelled SLNs prior to neoadjuvant chemotherapy (NACT). Numerous clinical and preclinical studies have explored the use of carbon-based colloids for SLN tattooing prior to NACT. However, carbon vectors show varying degrees of inflammatory reactions and, in about one fifth of cases, carbon particles migrate via the lymphatic pathway to other nodes, causing the SLN to mismatch the tattooed node. To overcome these limitations, in this study, we explored the use of melanin as a staining endogenous pigment. We synthesized and characterized melanin-loaded polymeric nanoparticles (Mel-NPs) and used them to tattoo lymph nodes in pig animal models given the similarity in the size of the human and pig nodes. Mel-NPs tattooed lymph nodes showed high identification rates, reaching 83.3% positive identification 16 weeks after tattooing. We did not observe any reduction in the identification as time increased, implying that the colloid is stable in the lymph node tissue. In addition, we performed histological and ultrastructural studies to characterize the biological behavior of the tag. We observed foreign-body-like granulomatous inflammatory responses associated with Mel-NPs, characterized by the formation of multinucleated giant cells. In addition, electron microscopy studies showed that uptake is mainly performed by macrophages, and that macrophages undergo cellular damage associated with particle uptake.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39009419

RESUMO

BACKGROUND: Sarcopenia, the gradual and generalized loss of muscle mass and function with ageing, is one of the major health problems in older adults, given its high prevalence and substantial socioeconomic implications. Despite the extensive efforts to reach consensus on definition and diagnostic tests and cut-offs for sarcopenia, there is an urgent and unmet need for non-invasive, specific and sensitive biomarkers for the disease. Extracellular vesicles (EVs) are present in different biofluids including plasma, whose cargo reflects cellular physiology. This work analysed EV proteome in sarcopenia and robust patients in the search for differentially contained proteins that can be used to diagnose the disease. METHODS: Plasma small EVs (sEVs) from a total of 29 robust controls (aged 73.4 ± 5.6 years; 11 men and 18 women) and 49 sarcopenic patients (aged 82.3 ± 5.4 years; 15 men and 34 women) aged 65 years and older were isolated and their cargo was analysed by proteomics. Proteins whose concentration in sEVs was different between sarcopenic and robust patients were further validated using ELISA. The concentration of these candidates was correlated to the EWGSOP2 sarcopenia tests for low muscle strength and low physical performance, and receiver operating characteristic (ROC) curve analyses were carried out to evaluate their diagnostic power, sensitivity and specificity. RESULTS: Proteomic analysis identified 157 sEVs proteins in both sarcopenic and robust samples. Among them, 48 proteins had never been reported in the ExoCarta nor Vesiclepedia databases. Statistical analysis revealed eight proteins whose concentration was significantly different between groups: PF4 (log2 FC = 4.806), OIT3 (log2 FC = -1.161), MMRN1 (log2 FC = -1.982), MASP1 (log2 FC = -0.627), C1R (log2 FC = 1.830), SVEP1 (log2 FC = 1.295), VCAN (FC = 0.937) and SPTB (log2 FC = 1.243). Among them, platelet factor 4 (PF4) showed the lowest concentration while Complement C1r subcomponent (C1R) increased the most in sarcopenic patients, being these results confirmed by ELISA (P = 1.07E-09 and P = 0.001287, respectively). The concentrations of candidate proteins significantly correlated with EWGSOP2 tests currently used. ROC curve analysis showed an area under the curve of 0.8921 and 0.7476 for PF4 and C1R, respectively. Choosing the optimal for PF4, 80% sensitivity and 85.71% specificity was reached while the optimal cut-off value of C1R would allow sarcopenia diagnosis with 75% sensitivity and 66.67% specificity. CONCLUSIONS: Our results support the determination of EV PF4 and C1R as plasma diagnostic biomarkers in sarcopenia and open the door to investigate the role of the content of these vesicles in the pathogeny of the disease.

3.
ACS Appl Mater Interfaces ; 16(23): 29844-29855, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829261

RESUMO

Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.


Assuntos
Cobre , Indóis , Nanopartículas , Polímeros , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas , Cobre/química , Cobre/farmacologia , Polímeros/química , Polímeros/farmacologia , Indóis/química , Indóis/farmacologia , Humanos , Animais , Camundongos , Nanopartículas/química , Feminino , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Oxirredução , Nanomedicina , Proliferação de Células/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Superóxido Dismutase-1/metabolismo
4.
Br J Neurosurg ; : 1-5, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836514

RESUMO

Pilocytic Astrocytomas are generally presenting as WHO grade 1 intracranial masses in the paediatric population with a favourable prognostic. In less common instances they can be found in the spinal cord. There have been rare cases of Anaplastic variants of the Cranial Pilocytic Astrocytomas. We report a rare instance of an adult patient with pilocytic astrocytoma of the cervical cord with anaplastic features. Our patient presented with 6 months history of neck pain and right-hand paraesthesia which partially responded to steroid treatment. MRI of the cervical spine demonstrated marked expansion of the cervical cord with oedema extending cranially to the medulla and caudally to the mid-thoracic cord. Post-gadolinium T1-weighted images showed intense intramedullary enhancement mainly centred at the level of the C3 vertebra. Diffusion Tensor Imaging Tractography showed the central location of the tumour expanding the cord and displacing the tracts circumferentially. Surgical resection was performed in two stages according to the Elsberg and Beer technique that assisted with safe margin tumour debulking. The histological sections revealed a glial lineage tumour with retained ATRX nuclear expression, positive for GFAP, Ki-67 estimated to 10% and a methylation class corresponding to an Anaplastic Pilocytic Astrocytoma. Subsequently, our patient underwent adjuvant radiotherapy and chemotherapy (10 cycles of Temozolamide and 6 cycles of CCNU). Symptomatic progression developed at 18 months from the initial surgery, radiological progression at 34 months and the overall survival was 40 months. We reviewed the literature and found only four other cases with similar histology.

5.
Cells ; 13(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667306

RESUMO

Several studies have reported the successful use of bio-orthogonal catalyst nanoparticles (NPs) for cancer therapy. However, the delivery of the catalysts to the target tissues in vivo remains an unsolved challenge. The combination of catalytic NPs with extracellular vesicles (EVs) has been proposed as a promising approach to improve the delivery of therapeutic nanomaterials to the desired organs. In this study, we have developed a nanoscale bio-hybrid vector using a CO-mediated reduction at low temperature to generate ultrathin catalytic Pd nanosheets (PdNSs) as catalysts directly inside cancer-derived EVs. We have also compared their biodistribution with that of PEGylated PdNSs delivered by the EPR effect. Our results indicate that the accumulation of PdNSs in the tumour tissue was significantly higher when they were administered within the EVs compared to the PEGylated PdNSs. Conversely, the amount of Pd found in non-target organs (i.e., liver) was lowered. Once the Pd-based catalytic EVs were accumulated in the tumours, they enabled the activation of a paclitaxel prodrug demonstrating their ability to carry out bio-orthogonal uncaging chemistries in vivo for cancer therapy.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Animais , Catálise , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Paládio/química , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Linhagem Celular Tumoral , Distribuição Tecidual , Polietilenoglicóis/química , Nanopartículas/química , Pró-Fármacos , Camundongos Nus
6.
Nano Lett ; 24(7): 2242-2249, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346395

RESUMO

Bioorthogonal catalysis employing transition metal catalysts is a promising strategy for the in situ synthesis of imaging and therapeutic agents in biological environments. The transition metal Pd has been widely used as a bioorthogonal catalyst, but bare Pd poses challenges in water solubility and catalyst stability in cellular environments. In this work, Pd(0) loaded amphiphilic polymeric nanoparticles are applied to shield Pd in the presence of living cells for the in situ generation of a fluorescent dye and anticancer drugs. Pd(0) loaded polymeric nanoparticles prepared by the reduction of the corresponding Pd(II)-polymeric nanoparticles are highly active in the deprotection of pro-rhodamine dye and anticancer prodrugs, giving significant fluorescence enhancement and toxigenic effects, respectively, in HepG2 cells. In addition, we show that the microstructure of the polymeric nanoparticles for scaffolding Pd plays a critical role in tuning the catalytic efficiency, with the use of the ligand triphenylphosphine as a key factor for improving the catalyst stability in biological environments.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Humanos , Pró-Fármacos/química , Antineoplásicos/química , Nanopartículas/química , Polímeros/química , Células Hep G2 , Catálise
7.
J Nutr Biochem ; 124: 109503, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37898391

RESUMO

Hepatic thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family found associated with anti-steatotic properties of squalene and located in the endoplasmic reticulum and in lipid droplets. Considering that the latter are involved in hepatic squalene accumulation, the present research was aimed to investigate the role of TXNDC5 on hepatic squalene management in mice and in the AML12 hepatic cell line. Wild-type and TXNDC5-deficient (KO) mice were fed Western diets with or without 1% squalene supplementation for 6 weeks. In males, but not in females, absence of TXNDC5 blocked hepatic, but not duodenal, squalene accumulation. Hepatic lipid droplets were isolated and characterized using label-free LC-MS/MS analysis. TXNDC5 accumulated in this subcellular compartment of mice receiving squalene and was absent in TXNDC5-KO male mice. The latter mice were unable to store squalene in lipid droplets. CALR and APMAP were some of the proteins that responded to the squalene administration in all studied conditions. CALR and APMAP were positively associated with lipid droplets in the presence of squalene and they were decreased by the absence of TXNDC5. The increased squalene content was reproduced in vitro using AML12 cells incubated with squalene-loaded nanoparticles and this effect was not observed in an engineered cell line lacking TXNDC5. The phenomenon was also present when incubated in the presence of a squalene epoxidase inhibitor, suggesting a mechanism of squalene exocytosis involving CALR and APMAP. In conclusion, squalene accumulation in hepatic lipid droplets is sex-dependent on TXNDC5 that blocks its secretion.


Assuntos
Gotículas Lipídicas , Esqualeno , Animais , Feminino , Masculino , Camundongos , Cromatografia Líquida , Gotículas Lipídicas/metabolismo , Esqualeno/farmacologia , Esqualeno/metabolismo , Espectrometria de Massas em Tandem , Tiorredoxinas/metabolismo
8.
Methods Mol Biol ; 2679: 181-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300616

RESUMO

Exosomes are extracellular vesicles that are involved in cell-cell communication. Considering their bioavailability and accessibility in all the body fluids (including the blood, semen, breast milk, saliva, and urine), their use has been proposed as an alternative noninvasive tool for the diagnosis, monitoring, and prognosis of several diseases, including cancer. The isolation of exosomes and their subsequent analysis are emerging as a promising technique in diagnostics and personalized medicine. The most widely employed isolation procedure is differential ultracentrifugation, but this approach is laborious, time-consuming, and expensive and with limited isolation yield. Microfluidic devices are now emerging as novel platforms for exosome isolation, which is a low cost technology and enables high purity and fast treatment of exosome isolation. Our approach describes a microfluidic device that enables inflow capture and separation from whole blood using antibody-functionalized magnetic nanoparticles. This device allows isolation of pancreatic cancer-derived exosomes from whole blood without the need of any pretreatment, resulting in a high sensitivity.


Assuntos
Exossomos , Vesículas Extracelulares , Técnicas Analíticas Microfluídicas , Neoplasias Pancreáticas , Humanos , Microfluídica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas
9.
Cancers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37173946

RESUMO

Small extracellular vesicle (EV) membranes display characteristic protein-lipidic composition features that are related to their cell of origin, providing valuable clues regarding their parental cell composition and real-time state. This could be especially interesting in the case of cancer cell-derived EVs, as their membranes could serve as valuable tools in liquid biopsy applications and to detect changes in the tumor malignancy. X-Ray Photoelectron Spectroscopy (XPS) is a powerful surface analysis technique able to detect every chemical element present, being also sensitive to their chemical environment. Here we explore the use of XPS as a fast technique to characterize EV membrane composition, with possible application in cancer research. Notably, we have focused on the nitrogen environment as an indicator of the relative abundance of pyridine-type bonding, primary, secondary and tertiary amines. Specifically, we have analyzed how tumoral and healthy cells have different nitrogen chemical environments that can indicate the presence or absence of malignancy. In addition, a collection of human serum samples from cancer patients and healthy donors was also analyzed. The differential XPS analysis of EVs collected from patients confirmed that the patterns of amine evolution could be related to markers of cancer disease, opening the possibility of their use as a non-invasive blood biomarker.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36780137

RESUMO

Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication and have great potential as efficient delivery vectors. However, a better understanding of EV in vivo behavior is hampered by the limitations of current imaging tools. In addition, chemical labels present the risk of altering the EV membrane features and, thus, in vivo behavior. 19F-MRI is a safe bioimaging technique providing selective images of exogenous probes. Here, we present the first example of fluorinated EVs containing PERFECTA, a branched molecule with 36 magnetically equivalent 19F atoms. A PERFECTA emulsion is given to the cells, and PERFECTA-containing EVs are naturally produced. PERFECTA-EVs maintain the physicochemical features, morphology, and biological fingerprint as native EVs but exhibit an intense 19F-NMR signal and excellent 19F relaxation times. In vivo 19F-MRI and tumor-targeting capabilities of stem cell-derived PERFECTA-EVs are also proved. We propose PERFECTA-EVs as promising biohybrids for imaging biodistribution and delivery of EVs throughout the body.

11.
Sci Total Environ ; 870: 161887, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36731550

RESUMO

The endophytic Basidiomycete Sporobolomyces ruberrimus protects its host Arabidopsis arenosa against metal toxicity. Plants inoculated with the fungus yielded more biomass and exhibited significantly fewer stress symptoms in medium mimicking mine dump conditions (medium supplemented with excess of Fe, Zn and Cd). Aside from fine-tuning plant metal homeostasis, the fungus was capable of precipitating Fe in the medium, most likely limiting host exposure to metal toxicity. The precipitated residue was identified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD) and electron microscopy (SEM/TEM) with energy dispersive X-Ray analysis (EDX/SAED) techniques. The performed analyses revealed that the fungus transforms iron into amorphous (oxy)hydroxides and phosphates and immobilizes them in the form of a precipitate changing Fe behaviour in the MSR medium. Moreover, the complexation of free Fe ions by fungi could be obtained by biomolecules such as lipids, proteins, or biosynthesized redox-active molecules.


Assuntos
Arabidopsis , Basidiomycota , Ferro/toxicidade , Ferro/química , Metais , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
Nano Lett ; 23(3): 804-811, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36648322

RESUMO

Bioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cells.


Assuntos
Nanotubos , Paládio , Ligas , Paclitaxel , Catálise
13.
Inorg Chem ; 61(48): 19261-19273, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383699

RESUMO

Novel heteronuclear IrIII-CuII coordination compounds ([Ir(η5-Cp*)Cl2Pcfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (1), [Ir(η5-Cp*)Cl2Pnfx-Cu(phen)](NO3)·1.75(CH3OH)·0.75(H2O) (2), [Ir(η5-Cp*)Cl2Plfx-Cu(phen)](NO3)·1.3(H2O)·1.95(CH3OH) (3), [Ir(η5-Cp*)Cl2Psfx-Cu(phen)] (4)) bearing phosphines derived from fluoroquinolones, namely, sparfloxacin (Hsfx), ciprofloxacin (Hcfx), lomefloxacin (Hlfx), and norfloxacin (Hnfx), have been synthesized and studied as possible anticancer chemotherapeutics. All compounds have been characterized by electrospray ionization mass spectrometry (ESI-MS), a number of spectroscopic methods (i.e., IR, fluorescence, and electron paramagnetic resonance (EPR)), cyclic voltammetry, variable-temperature magnetic susceptibility measurements, and X-ray diffractometry. The coordination geometry of IrIII in all complexes adopts a characteristic piano-stool geometry with the η5-coordinated and three additional sites occupied by two chloride and phosphine ligands, while CuII ions in complexes 1 and 2 form a distorted square-pyramidal coordination geometry, and in complex 3, the coordination geometry around CuII ions is a distorted octahedron. Interestingly, the crystal structure of [Ir(η5-Cp*)Cl2Plfx-Cu(phen)] features the one-dimensional (1D) metal-organic polymer. Liposomes loaded with redox-active and fluorescent [Ir(η5-Cp*)Cl2Pcfx-Cu(phen)] (1L) have been prepared to increase water solubility and minimize serious systemic side effects. It has been proven, by confocal microscopy and an inductively coupled plasma mass spectrometry (ICP-MS) analysis, that the liposomal form of compound 1 can be effectively accumulated inside human lung adenocarcinoma and human prostate carcinoma cells with selective localization in nuclei. A cytometric analysis showed dominance of apoptosis over the other cell death types. Furthermore, the investigated nanoformulations induced changes in the cell cycle, leading to S phase arrest in a dose-dependent manner. Importantly, in vitro anticancer action on three-dimensional (3D) multicellular tumor spheroids has been demonstrated.


Assuntos
Carcinoma , Complexos de Coordenação , Humanos , Masculino , Cobre/química , Lipossomos , Próstata , Íons , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cristalografia por Raios X
14.
J Nanobiotechnology ; 20(1): 473, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335359

RESUMO

BACKGROUND: Platinum nanoparticles have been demonstrated to have excellent anticancer properties. However, because of the lack of specificity they must be delivered to the tumor in amounts sufficient to reach the desired therapeutic objectives. Interestingly, exosomes are considered as excellent natural selective delivery nanotools, but until know their targeting properties have not being combined with the anticancer properties of platinum nanoparticles. RESULTS: In this work we combine the targeting capabilities of exosomes and the antitumoral properties of ultrasmall (< 2 nm) platinum nanoparticles as a novel, low toxicity alternative to the use of cisplatin. A mild methodology based on the room temperature CO-assisted in situ reduction of Pt2+ precursor was employed to preserve the integrity of exosomes, while generating ultrasmall therapeutic PtNPs directly inside the vesicles. The resulting PtNPs-loaded exosomes constitute a novel hybrid bioartificial system that was readily internalized by the target cells inducing antiproliferative response, as shown by flow cytometry and microscopy experiments in vitro. In vivo Pt-Exos showed antitumoral properties similar to that of cisplatin but with a strongly reduced or in some cases no toxic effect, highlighting the advantages of this approach and its potential for translation to the clinic. CONCLUSIONS: In this study, a nanoscale vector based on ultrasmall PtNPs and exosomes has been created exhibiting antitumoral properties comparable or higher to those of the FDA approved cisplatin. The preferential uptake of PtNPs mediated by exosomal transfer between certain cell types has been exploited to create a selective antitumoral novel bioartificial system. We have demonstrated their anticancer properties both in vitro and in vivo comparing the results obtained with the administration of equivalent amounts of cisplatin, and showing a spectacular reduction of toxicity.


Assuntos
Exossomos , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Cisplatino/farmacologia , Platina , Linhagem Celular Tumoral
15.
Materials (Basel) ; 15(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35888208

RESUMO

The use of face masks and air purification systems has been key to curbing the transmission of SARS-CoV-2 aerosols in the context of the current COVID-19 pandemic. However, some masks or air conditioning filtration systems are designed to remove large airborne particles or bacteria from the air, being limited their effectiveness against SARS-CoV-2. Continuous research has been aimed at improving the performance of filter materials through nanotechnology. This article presents a new low-cost method based on electrostatic forces and coordination complex formation to generate antiviral coatings on filter materials using silver nanoparticles and polyethyleneimine. Initially, the AgNPs synthesis procedure was optimized until reaching a particle size of 6.2 ± 2.6 nm, promoting a fast ionic silver release due to its reduced size, obtaining a stable colloid over time and having reduced size polydispersity. The stability of the binding of the AgNPs to the fibers was corroborated using polypropylene, polyester-viscose, and polypropylene-glass spunbond mats as substrates, obtaining very low amounts of detached AgNPs in all cases. Under simulated operational conditions, a material loss less than 1% of nanostructured silver was measured. SEM micrographs demonstrated high silver distribution homogeneity on the polymer fibers. The antiviral coatings were tested against SARS-CoV-2, obtaining inactivation yields greater than 99.9%. We believe our results will be beneficial in the fight against the current COVID-19 pandemic and in controlling other infectious airborne pathogens.

16.
Micromachines (Basel) ; 13(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35744492

RESUMO

A facile and robust microfluidic method to produce nanoparticle-in-microparticle systems (Trojan systems) is reported as a delivery vector for the oral administration of active pharmaceutical ingredients. The microfluidic system is based on two coaxial capillaries that produce monodisperse water-in-oil-in-water (W/O/W) double emulsions in a highly controlled fashion with precise control over the resulting particle structure, including the core and shell dimensions. The influence of the three phase flow rates, pH and drying process on the formation and overall size is evaluated. These droplets are then used as templates for the production of pH-sensitive Trojan microparticles after solvent evaporation. The shell of Trojan microparticles is made of Eudragit®, a methacrylic acid-ethyl acrylate copolymer that would enable the Trojan microparticle payload to first pass through the stomach without being degraded and then dissolve in the intestinal fluid, releasing the inner payload. The synthesis of the pH-sensitive Trojan microparticles was also compared with a conventional batch production method. The payloads considered in this work were different in nature: (1) fluorescein, to validate the feasibility of the polymeric shell to protect the payload under gastric pH; (2) poly(D,L-lactic acid/glycolic acid)-PLGA nanoparticles loaded with the antibiotic rifampicin. These PLGA nanoparticles were produced also using a microfluidic continuous process and (3) PLGA nanoparticles loaded with Au nanoparticles to trace the PLGA formulation under different environments (gastric and intestinal), and to assess whether active pharmaceutical ingredient (API) encapsulation in PLGA is due efficiently. We further showed that Trojan microparticles released the embedded PLGA nanoparticles in contact with suitable media, as confirmed by electron microscopy. Finally, the results show the possibility of developing Trojan microparticles in a continuous manner with the ability to deliver therapeutic nanoparticles in the gastrointestinal tract.

17.
Antioxidants (Basel) ; 11(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326231

RESUMO

Virgin olive oil, the main source of fat in the Mediterranean diet, contains a substantial amount of squalene which possesses natural antioxidant properties. Due to its highly hydrophobic nature, its bioavailability is reduced. In order to increase its delivery and potentiate its actions, squalene has been loaded into PLGA nanoparticles (NPs). The characterization of the resulting nanoparticles was assessed by electron microscopy, dynamic light scattering, zeta potential and high-performance liquid chromatography. Reactive oxygen species (ROS) generation and cell viability assays were carried out in AML12 (alpha mouse liver cell line) and a TXNDC5-deficient AML12 cell line (KO), which was generated by CRISPR/cas9 technology. According to the results, squalene was successfully encapsulated in PLGA NPs, and had rapid and efficient cellular uptake at 30 µM squalene concentration. Squalene reduced ROS in AML12, whereas ROS levels increased in KO cells and improved cell viability in both when subjected to oxidative stress by significant induction of Gpx4. Squalene enhanced cell viability in ER-induced stress by decreasing Ern1 or Eif2ak3 expressions. In conclusion, TXNDC5 shows a crucial role in regulating ER-induced stress through different signaling pathways, and squalene protects mouse hepatocytes from oxidative and endoplasmic reticulum stresses by several molecular mechanisms depending on TXNDC5.

18.
J Extracell Vesicles ; 11(3): e12193, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35257503

RESUMO

The main current challenges in oncology are (1) avoiding systemic side effects in therapy, and (2) developing alternative treatment strategies for metastatic tumours. Nanomedicine was assumed to provide answers to these issues, but delivering enough therapeutic nanoparticles (NPs) to tumours still remains a huge challenge in nanomaterials-based treatments. Extracellular vesicles (EVs) play a key role in cell communication processes and can be combined with nanomaterials to improve their targeting capabilities. In this work, we leverage the ability of EVs derived from stem cells to reach tumour areas successfully, being used as delivery vehicles for nanoparticles acting as hyperthermia agents. Once small extracellular vesicles (sEVs) loaded with NIR-sensitive hollow gold NPs reached primary subcutaneous solid tumours, they were irradiated with a NIR laser and almost complete tumour remission was obtained. More interestingly, those sEV vehicles were also able to reach multinodular areas similar to those on advanced metastatic phases, eradicating most tumour growth regions in multiple cancerous nodules located in the pancreas region.


Assuntos
Vesículas Extracelulares , Hipertermia Induzida , Nanopartículas , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico , Células-Tronco
19.
ChemMedChem ; 16(24): 3730-3738, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34581019

RESUMO

Therapeutic perspectives of bone tumors such as osteosarcoma remain restricted due to the inefficacy of current treatments. We propose here the construction of a novel anticancer squalene-based nanomedicine with bone affinity and retention capacity. A squalenyl-hydroxybisphosphonate molecule was synthetized by chemical conjugation of a 1-hydroxyl-1,1-bisphosphonate moiety to the squalene chain. This amphiphilic compound was inserted onto squalenoyl-gemcitabine nanoparticles using the nanoprecipitation method. The co-assembly led to nanoconstructs of 75 nm, with different morphology and colloidal properties. The presence of squalenyl-hydroxybisphosphonate enhanced the nanoparticles binding affinity for hydroxyapatite, a mineral present in the bone. Moreover, the in vitro anticancer activity was preserved when tested in commercial and patient-treated derived pediatric osteosarcoma cells. Further in vivo studies will shed light on the potential of these nanomedicines for the treatment of bone sarcomas.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Desoxicitidina/análogos & derivados , Nanopartículas/química , Organofosfonatos/farmacologia , Osteossarcoma/tratamento farmacológico , Esqualeno/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Organofosfonatos/química , Osteossarcoma/patologia , Esqualeno/química , Relação Estrutura-Atividade , Gencitabina
20.
Bioorg Med Chem ; 41: 116217, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022529

RESUMO

The recent incorporation of Au chemistry in the bioorthogonal toolbox has opened up new opportunities to deliver biologically independent reactions in living environments. Herein we report that the O-propargylation of the hydroxamate group of the potent HDAC inhibitor panobinostat leads to a vast reduction of its anticancer properties (>500-fold). We also show that this novel prodrug is converted back into panobinostat in the presence of Au catalysts in vitro and in cell culture.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Panobinostat/química , Panobinostat/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Ouro , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA