Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Glia ; 72(6): 1096-1116, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38482984

RESUMO

The medial prefrontal cortex (mPFC) is involved in cognitive functions such as working memory. Astrocytic cannabinoid type 1 receptor (CB1R) induces cytosolic calcium (Ca2+) concentration changes with an impact on neuronal function. mPFC astrocytes also express adenosine A1 and A2A receptors (A1R, A2AR), being unknown the crosstalk between CB1R and adenosine receptors in these cells. We show here that a further level of regulation of astrocyte Ca2+ signaling occurs through CB1R-A2AR or CB1R-A1R heteromers that ultimately impact mPFC synaptic plasticity. CB1R-mediated Ca2+ transients increased and decreased when A1R and A2AR were activated, respectively, unveiling adenosine receptors as modulators of astrocytic CB1R. CB1R activation leads to an enhancement of long-term potentiation (LTP) in the mPFC, under the control of A1R but not of A2AR. Notably, in IP3R2KO mice, that do not show astrocytic Ca2+ level elevations, CB1R activation decreases LTP, which is not modified by A1R or A2AR. The present work suggests that CB1R has a homeostatic role on mPFC LTP, under the control of A1R, probably due to physical crosstalk between these receptors in astrocytes that ultimately alters CB1R Ca2+ signaling.


Assuntos
Astrócitos , Canabinoides , Camundongos , Animais , Receptores de Canabinoides , Receptor A2A de Adenosina , Plasticidade Neuronal , Receptor CB1 de Canabinoide/genética
3.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003438

RESUMO

Rett Syndrome is an X-linked neurodevelopmental disorder (RTT; OMIM#312750) associated to MECP2 mutations. MeCP2 dysfunction is seen as one cause for the deficiencies found in brain-derived neurotrophic factor (BDNF) signaling, since BDNF is one of the genes under MeCP2 jurisdiction. BDNF signaling is also dependent on the proper function of the adenosinergic system. Indeed, both BDNF signaling and the adenosinergic system are altered in Mecp2-null mice (Mecp2-/y), a representative model of severe manifestation of RTT. Considering that symptoms severity largely differs among RTT patients, we set out to investigate the BDNF and ADO signaling modifications in Mecp2 heterozygous female mice (Mecp2+/-) presenting a less severe phenotype. Symptomatic Mecp2+/- mice have lower BDNF levels in the cortex and hippocampus. This is accompanied by a loss of BDNF-induced facilitation of hippocampal long-term potentiation (LTP), which could be restored upon selective activation of adenosine A2A receptors (A2AR). While no differences were observed in the amount of adenosine in the cortex and hippocampus of Mecp2+/- mice compared with healthy littermates, the density of the A1R and A2AR subtype receptors was, respectively, upregulated and downregulated in the hippocampus. Data suggest that significant changes in BDNF and adenosine signaling pathways are present in an RTT model with a milder disease phenotype: Mecp2+/- female animals. These features strengthen the theory that boosting adenosinergic activity may be a valid therapeutic strategy for RTT patients, regardless of their genetic penetrance.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Síndrome de Rett , Animais , Feminino , Humanos , Camundongos , Adenosina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estudos Transversais , Modelos Animais de Doenças , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Knockout , Síndrome de Rett/metabolismo
4.
Neuropharmacology ; 236: 109600, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225084

RESUMO

About 50 years elapsed from the publication of the first full paper on the neuromodulatory action of adenosine at a 'simple' synapse model, the neuromuscular junction (Ginsborg and Hirst, 1972). In that study adenosine was used as a tool to increase cyclic AMP and for the great surprise, it decreased rather than increased neurotransmitter release, and for a further surprise, its action was prevented by theophylline, at the time only known as inhibitor of phosphodiesterases. These intriguing observations opened the curiosity for immediate studies relating the action of adenine nucleotides, known to be released together with neurotransmitters, to that of adenosine (Ribeiro and Walker, 1973, 1975). Our understanding on the ways adenosine uses to modulate synapses, circuits, and brain activity, vastly expanded since then. However, except for A2A receptors, whose actions upon GABAergic neurons of the striatum are well known, most of the attention given to the neuromodulatory action of adenosine has been focusing upon excitatory synapses. Evidence is growing that GABAergic transmission is also a target for adenosinergic neuromodulation through A1 and A2A receptors. Some o these actions have specific time windows during brain development, and others are selective for specific GABAergic neurons. Both tonic and phasic GABAergic transmission can be affected, and either neurons or astrocytes can be targeted. In some cases, those effects result from a concerted action with other neuromodulators. Implications of these actions in the control of neuronal function/dysfunction will be the focus of this review. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Assuntos
Sinapses , Transmissão Sináptica , Adenosina/farmacologia , Junção Neuromuscular , Neurônios GABAérgicos
5.
PLoS One ; 17(12): e0272104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36516126

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of corticospinal tract motor neurons. Previous studies showed that adenosine-mediated neuromodulation is disturbed in ALS and that vascular endothelial growth factor (VEGF) has a neuroprotective function in ALS mouse models. We evaluated how adenosine (A1R and A2AR) and VEGF (VEGFA, VEGFB, VEGFR-1 and VEGFR-2) system markers are altered in the cortex and spinal cord of pre-symptomatic and symptomatic SOD1G93A mice. We then assessed if/how chronic treatment of SOD1G93A mice with a widely consumed adenosine receptor antagonist, caffeine, modulates VEGF system and/or the levels of Brain-derived Neurotrophic Factor (BDNF), known to be under control of A2AR. We found out decreases in A1R and increases in A2AR levels even before disease onset. Concerning the VEGF system, we detected increases of VEGFB and VEGFR-2 levels in the spinal cord at pre-symptomatic stage, which reverses at the symptomatic stage, and decreases of VEGFA levels in the cortex, in very late disease states. Chronic treatment with caffeine rescued cortical A1R levels in SOD1G93A mice, bringing them to control levels, while rendering VEGF signaling nearly unaffected. In contrast, BDNF levels were significantly affected in SOD1G93A mice treated with caffeine, being decreased in the cortex and increased in spinal the cord. Altogether, these findings suggest an early dysfunction of the adenosinergic system in ALS and highlights the possibility that the negative influence of caffeine previously reported in ALS animal models results from interference with BDNF rather than with the VEGF signaling molecules.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cafeína/farmacologia , Cafeína/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Medula Espinal/metabolismo , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
J Mater Chem B ; 10(24): 4672-4683, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674248

RESUMO

Supporting mammalian cells against reactive oxygen species such as hydrogen peroxide (H2O2) is essential. Bottom-up synthetic biology aims to integrate designed artificial units with mammalian cells. Here, we used manganese dioxide nanosheets (MnO2-NSs) as catalytically active entities that have superoxide dismutase-like and catalase-like activities. The integration of these MnO2-NSs into 7 µm reactors was able to assist SH-SY5Y neuroblastoma cells when stressed with H2O2. Complementary, Janus-shaped 800 nm reactors with one hemisphere coated with MnO2-NSs showed directed locomotion in cell media with top speeds up to 50 µm s-1 when exposed to 300 mM H2O2 as a fuel, while reactors homogeneously coated with MnO2-NSs were not able to outperform Brownian motion. These Janus-shaped reactors were able to remove H2O2 from the media, protecting cells cultured in the proximity. This effort advanced the use of bottom-up synthetic biology concepts in neuroscience.


Assuntos
Compostos de Manganês , Neuroblastoma , Animais , Antioxidantes , Humanos , Peróxido de Hidrogênio , Mamíferos , Compostos de Manganês/farmacologia , Neuroblastoma/tratamento farmacológico , Óxidos/farmacologia
8.
Neuroscience ; 467: 122-133, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34033870

RESUMO

Glioblastoma (GBM) is the most common brain primary tumour. Hypoxic regions in GBM are associated to tumour growth. Adenosine accumulates in hypoxic regions and can affect cell proliferation and survival. However, how proliferating GBM cells respond/adapt to increased adenosine levels compared to human astrocytes (HA) is not clarified and was addressed in the present work. GBM cell lines and HA were treated for 3 days with test drugs. Thirty Adenosine (30 µM) caused a 43% ± 5% (P < 0.05) reduction of cell proliferation/viability in HA, through an adenosine receptor-independent mechanism, but had no effect in GBM cell lines U87MG, U373MG and SNB19. Contrastingly, inhibition of adenosine phosphorylation (using the adenosine kinase (ADK) inhibitor 5-iodotubercidin (ITU) (25 µM)), produced a strong and similar decrease on cell proliferation in both HA and GBM cells. The effect of adenosine on HA proliferation/viability was potentiated by 100 µM-homocysteine. Combined application of 30 µM-adenosine and 100 µM-homocysteine reduced the cell proliferation/viability in all three GBM cell lines, but this reduction was much lower than that observed in HA. Adenosine alone did not induce cell death, assessed by lactate dehydrogenase (LDH) release, both in HA and GBM cells, but potentiated the cytotoxic effect of homocysteine in HA and in U87MG and U373MG cells. Results show a strong attenuation of adenosine anti-proliferative effect in GBM cells compared to HA, probably resulting from increased adenosine elimination by ADK, suggesting a proliferative-prone adaptation of tumour cells to increased adenosine levels.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adenosina/farmacologia , Astrócitos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Glioblastoma/tratamento farmacológico , Humanos
9.
Stem Cells ; 39(10): 1362-1381, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34043863

RESUMO

Adenosine A2A receptor (A2A R) activation modulates several brain processes, ranging from neuronal maturation to synaptic plasticity. Most of these actions occur through the modulation of the actions of the neurotrophin brain-derived neurotrophic factor (BDNF). In this work, we studied the role of A2A Rs in regulating postnatal and adult neurogenesis in the rat hippocampal dentate gyrus (DG). Here, we show that A2A R activation with CGS 21680 promoted neural stem cell self-renewal, protected committed neuronal cells from cell death and contributed to a higher density of immature and mature neuronal cells, particularly glutamatergic neurons. Moreover, A2A R endogenous activation was found to be essential for BDNF-mediated increase in cell proliferation and neuronal differentiation. Our findings contribute to further understand the role of adenosinergic signaling in the brain and may have an impact in the development of strategies for brain repair under pathological conditions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hipocampo , Neurogênese , Receptor A2A de Adenosina , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Ratos , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo
10.
Pharmacol Res ; 163: 105363, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285234

RESUMO

Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.


Assuntos
Adenosina/metabolismo , Transtorno Depressivo Maior/metabolismo , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Humanos
11.
Pharmacol Res ; 162: 105281, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161136

RESUMO

Neurotrophins are a well-known family of neurotrophic factors that play an important role both in the central and peripheral nervous systems, where they modulate neuronal survival, development, function and plasticity. Brain-derived neurotrophic factor (BDNF) possesses diverse biological functions which are mediated by the activation of two main classes of receptors, the tropomyosin-related kinase (Trk) B and the p75 neurotrophin receptor (p75NTR). The therapeutic potential of BDNF has drawn attention since dysregulation of its signalling cascades has been suggested to underlie the pathogenesis of both common and rare diseases. Multiple strategies targeting this neurotrophin have been tested; most have found obstacles that ultimately hampered their effectiveness. This review focuses on the involvement of BDNF and its receptors in the pathophysiology of Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Rett Syndrome (RTT). We describe the known mechanisms leading to the impairment of BDNF/TrkB signalling in these disorders. Such mechanistic insight highlights how BDNF signalling compromise can take various shapes, nearly disease-specific. Therefore, BDNF-based therapeutic strategies must be specifically tailored and are more likely to succeed if a combination of resources is employed.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doenças do Sistema Nervoso/terapia , Doenças Raras/terapia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Doenças do Sistema Nervoso/metabolismo , Doenças Raras/metabolismo , Transdução de Sinais
12.
Int J Nanomedicine ; 15: 8609-8621, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33177821

RESUMO

INTRODUCTION: Nanoparticles (NPs), as drug delivery systems, appear to be a promising tool for prolonged therapeutic strategies as they allow a controlled drug release over time. However, most of the studies found in the literature simply contemplate the use of a single or low number of dosages with low NPs concentrations. In the context of chronic diseases, like Alzheimer's disease, cancer or human immunodeficiency virus (HIV), where the therapeutic scheme is also chronic, studies with numerous repeated dosages are often neglected. METHODS: We screened different NPs, polymeric and lipid-based, in a repeated-dose toxicity study, to evaluate the safety and tissue distribution of promising nanocarriers to be used in the treatment of long-lasting diseases. RESULTS: After administrating 24 high concentrated doses of the selected NPs intraperitoneally (i.p.) (3 times a week for 2 months), animals have presented NPs accumulation in different tissues. However, neither toxicity, bodyweight changes nor clinical signs of disease were observed. DISCUSSION: This work demonstrates no general adverse effects upon the studied NPs repeated-dose exposure, indicating the most promising NPs to be used in the different therapeutic circumstances, which may be useful in chronic diseases treatment.


Assuntos
Portadores de Fármacos/farmacocinética , Nanopartículas/química , Nanopartículas/toxicidade , Animais , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/toxicidade , Sistemas de Liberação de Medicamentos/métodos , Feminino , Lipídeos/química , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/farmacocinética , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/química , Distribuição Tecidual , Testes de Toxicidade
13.
Purinergic Signal ; 16(4): 503-518, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33025424

RESUMO

Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30-200 µM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 µM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.


Assuntos
Cafeína/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Antagonistas de Receptores Purinérgicos P1/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Glutamina , Hipocampo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Neurobiol Dis ; 145: 105043, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798727

RESUMO

Rett syndrome (RTT; OMIM#312750) is mainly caused by mutations in the X-linked MECP2 gene (methyl-CpG-binding protein 2 gene; OMIM*300005), which leads to impairments in the brain-derived neurotrophic factor (BDNF) signalling. The boost of BDNF mediated effects would be a significant breakthrough but it has been hampered by the difficulty to administer BDNF to the central nervous system. Adenosine, an endogenous neuromodulator, may accomplish that role since through A2AR it potentiates BDNF synaptic actions in healthy animals. We thus characterized several hallmarks of the adenosinergic and BDNF signalling in RTT and explored whether A2AR activation could boost BDNF actions. For this study, the RTT animal model, the Mecp2 knockout (Mecp2-/y) (B6.129P2 (C)-Mecp2tm1.1Bird/J) mouse was used. Whenever possible, parallel data was also obtained from post-mortem brain samples from one RTT patient. Ex vivo extracellular recordings of field excitatory post-synaptic potentials in CA1 hippocampal area were performed to evaluate synaptic transmission and long-term potentiation (LTP). RT-PCR was used to assess mRNA levels and Western Blot or radioligand binding assays were performed to evaluate protein levels. Changes in cortical and hippocampal adenosine content were assessed by liquid chromatography with diode array detection (LC/DAD). Hippocampal ex vivo experiments revealed that the facilitatory actions of BDNF upon LTP is absent in Mecp2-/y mice and that TrkB full-length (TrkB-FL) receptor levels are significantly decreased. Extracts of the hippocampus and cortex of Mecp2-/y mice revealed less adenosine amount as well as less A2AR protein levels when compared to WT littermates, which may partially explain the deficits in adenosinergic tonus in these animals. Remarkably, the lack of BDNF effect on hippocampal LTP in Mecp2-/y mice was overcome by selective activation of A2AR with CGS21680. Overall, in Mecp2-/y mice there is an impairment on adenosinergic system and BDNF signalling. These findings set the stage for adenosine-based pharmacological therapeutic strategies for RTT, highlighting A2AR as a therapeutic target in this devastating pathology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Síndrome de Rett/metabolismo , Transdução de Sinais/fisiologia , Animais , Hipocampo/metabolismo , Proteína 2 de Ligação a Metil-CpG , Camundongos , Camundongos Knockout , Receptor trkB/metabolismo , Síndrome de Rett/genética
15.
J Caffeine Adenosine Res ; 10(2): 45-60, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32566903

RESUMO

Adenosine is an endogenous anticonvulsant and neuroprotectant of the brain. Seizure activity produces large quantities of adenosine, and it is this seizure-induced adenosine surge that normally stops a seizure. However, within the context of epilepsy, adenosine plays a wide spectrum of different roles. It not only controls seizures (ictogenesis), but also plays a major role in processes that turn a normal brain into an epileptic brain (epileptogenesis). It is involved in the control of abnormal synaptic plasticity and neurodegeneration and plays a major role in the expression of comorbid symptoms and complications of epilepsy, such as sudden unexpected death in epilepsy (SUDEP). Given the important role of adenosine in epilepsy, therapeutic strategies are in development with the goal to utilize adenosine augmentation not only for the suppression of seizures but also for disease modification and epilepsy prevention, as well as strategies to block adenosine A2A receptor overfunction associated with neurodegeneration. This review provides a comprehensive overview of the role of adenosine in epilepsy.

16.
Cell Rep ; 31(12): 107796, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579923

RESUMO

Nervous tissue homeostasis requires the regulation of microglia activity. Using conditional gene targeting in mice, we demonstrate that genetic ablation of the small GTPase Rhoa in adult microglia is sufficient to trigger spontaneous microglia activation, producing a neurological phenotype (including synapse and neuron loss, impairment of long-term potentiation [LTP], formation of ß-amyloid plaques, and memory deficits). Mechanistically, loss of Rhoa in microglia triggers Src activation and Src-mediated tumor necrosis factor (TNF) production, leading to excitotoxic glutamate secretion. Inhibiting Src in microglia Rhoa-deficient mice attenuates microglia dysregulation and the ensuing neurological phenotype. We also find that the Rhoa/Src signaling pathway is disrupted in microglia of the APP/PS1 mouse model of Alzheimer disease and that low doses of Aß oligomers trigger microglia neurotoxic polarization through the disruption of Rhoa-to-Src signaling. Overall, our results indicate that disturbing Rho GTPase signaling in microglia can directly cause neurodegeneration.


Assuntos
Envelhecimento/patologia , Microglia/patologia , Degeneração Neural/patologia , Neurônios/metabolismo , Proteína rhoA de Ligação ao GTP/deficiência , Envelhecimento/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular , Polaridade Celular , Sobrevivência Celular , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fenótipo , Sinapses/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
17.
J Neurochem ; 153(4): 455-467, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31811731

RESUMO

Brain adenosine concentrations can reach micromolar concentrations in stressful situations such as stroke, neurodegenerative diseases or hypoxic regions of brain tumours. Adenosine can act by receptor-independent mechanism by reversing the reaction catalysed by S-adenosylhomocysteine (SAH) hydrolase, leading to SAH accumulation and inhibition of S-adenosylmethionine (SAM)-dependent methyltransferases. Astrocytes are essential in maintaining brain homeostasis but their pathological activation and uncontrolled proliferation plays a role in neurodegeneration and glioma. Adenosine can affect cell proliferation, but the effect of increased adenosine concentration on proliferation of astrocytes is not clarified and was addressed in present work. Human astrocytes (HA) were treated for 3 days with test drugs. Cell proliferation/viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay and by cell counting. Cell death was evaluated by assessing lactate dehydrogenase release and by western blot analysis of αII-Spectrin cleavage. 30 µM-Adenosine caused a 40% ± 3% (p < .05, n = 5) reduction in cell proliferation/viability, an effect reversed by 2U/ml-adenosine deaminase, but unchanged in the presence of antagonists of any of the adenosine receptors. Adenosine alone did not induce cell death. 100 µM-Homocysteine alone caused 16% ± 3% (p < .05) decrease in HA proliferation. Combined action of adenosine and homocysteine decreased HA proliferation by 76% ± 4%, an effect higher (p < .05) than the sum of the effects of adenosine and homocysteine alone (56% ± 5%). The inhibitory effect of adenosine on HA proliferation/viability was mimicked by two adenosine kinase inhibitors and attenuated in the presence of folate (100 µM) or SAM (50-100 µM). The results suggest that adenosine reduces HA proliferation by a receptor-independent mechanism probably involving reversal of SAH hydrolase-catalysed reaction.


Assuntos
Adenosina/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Agonistas do Receptor Purinérgico P1/farmacologia , Receptores Purinérgicos P1/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Humanos
18.
Neuropharmacology ; 155: 10-21, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103616

RESUMO

Patients under cannabis-based therapies are usually chronically exposed to cannabinoids. Chronic treatment with a cannabinoid receptor agonist, WIN 55,212-2, affects brain metabolism and modifies functional connectivity between brain areas responsible for memory and learning. Therefore, it is of uttermost importance to discover strategies to mitigate the negative side-effects of cannabinoid-based therapies. Previously, we showed that a single treatment with the synthetic cannabinoid WIN 55,212-2 disrupts recognition memory, an effect mediated by cannabinoid receptor 1 (CB1R) and cancelled by concomitant administration of adenosine A2A receptor (A2AR) antagonists. We herein evaluate if memory deficits induced by chronic exposure to WIN 55,212-2 can also be reverted by A2AR antagonism, and assessed the synaptic mechanisms that could be involved in that reversal. We show that chronic administration of KW-6002 (istradefylline) (3 mg/kg/28days) reverts memory deficits (evaluated through the Novel Object Recognition Test) induced by chronic cannabinoid exposure (WIN 55,212-2, 1 mg/kg/28 days). Long Term Potentiation (LTP) of synaptic potentials recorded from the CA1 area of the hippocampus was impaired by WIN 55,212-2 (300 nM), an effect partially rescued by the A2AR antagonist, SCH 58261 (100 nM). Chronic administration of KW-6002 or WIN 55,212-2 did not affect A2AR or CB1R binding in the hippocampus and in the prefrontal cortex. These results, showing that A2AR antagonism can still revert memory deficits after chronic administration of a cannabinoid, an effect that involves mitigation of synaptic plasticity impairment, strongly indicate that adenosine A2ARs are appropriate targets to tackle side-effects of putative therapies involving the activation of cannabinoid receptors.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Canabinoides/toxicidade , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Receptor A2A de Adenosina , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Benzoxazinas/toxicidade , Masculino , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/toxicidade , Naftalenos/toxicidade , Purinas/farmacologia , Purinas/uso terapêutico , Receptor A2A de Adenosina/metabolismo
19.
Br J Pharmacol ; 175(23): 4386-4397, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30220081

RESUMO

BACKGROUND AND PURPOSE: NMDA receptors play a key role in both synaptic plasticity and neurodegeneration. Adenosine is an endogenous neuromodulator and through membrane receptors of the A2A subtype can influence both synaptic plasticity and neuronal death. The present work was designed to evaluate the influence of adenosine A2A receptors upon NMDA receptor activity in CA1 hippocampal neurons. We discriminated between modulation of synaptic versus extrasynaptic receptors, since extrasynaptic NMDA receptors are mostly associated with neurodegeneration while synaptic NMDA receptors are linked to plasticity phenomena. EXPERIMENTAL APPROACH: Whole-cell patch-clamp recordings were obtained to evaluate NMDA receptor actions on CA1 pyramidal neurons of young adult (5-10 weeks) male Wistar rat hippocampus. KEY RESULTS: Activation of A2A receptors with CGS 21680 (30 nM) consistently facilitated chemically-evoked NMDA receptor-currents (NMDA-PSCs) and afferent-evoked NMDA-currents (NMDA-EPSCs), an action prevented by an A2A receptor antagonist (SCH58261, 100 nM) and a PKA inhibitor, H-89 (1 µM). These actions did not reflect facilitation in glutamate release since there was no change in NMDA-EPSCs paired pulse ratio. A2A receptor actions were lost in the presence of an open-channel NMDA receptor blocker, MK-801 (10 µM), but persisted in the presence of memantine, at a concentration (10 µM) known to preferentially block extrasynaptic NMDA receptors. CONCLUSION AND IMPLICATIONS: These results show that A2A receptors exert a positive postsynaptic modulatory effect over synaptic, but not extrasynaptic, NMDA receptors in CA1 neurons and, therefore, under non-pathological conditions may contribute to shift the dual role of NMDA receptors towards enhancement of synaptic plasticity.


Assuntos
Região CA1 Hipocampal/metabolismo , N-Metilaspartato/metabolismo , Células Piramidais/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
20.
J Neuroinflammation ; 15(1): 203, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996878

RESUMO

BACKGROUND: Epilepsy is a prevalent neurological disorder worldwide. It is characterized by an enduring predisposition to generate seizures and its development is accompanied by alterations in many cellular processes. Organotypic slice cultures represent a multicellular environment with the potential to assess biological mechanisms, and they are used as a starting point for refining molecules for in vivo studies. Here, we investigated organotypic slice cultures as a model of epilepsy. METHODS: We assessed, by electrophysiological recordings, the spontaneous activity of organotypic slices maintained under different culture protocols. Moreover, we evaluated, through molecular-based approaches, neurogenesis, neuronal death, gliosis, expression of proinflammatory cytokines, and activation of NLRP3 inflammasome (nucleotide-binding, leucine-rich repeat, pyrin domain) as biomarkers of neuroinflammation. RESULTS: We demonstrated that organotypic slices, maintained under a serum deprivation culture protocol, develop epileptic-like activity. Furthermore, throughout a comparative study with slices that do not depict any epileptiform activity, slices with epileptiform activity were found to display significant differences in terms of inflammation-related features, such as (1) increased neuronal death, with higher incidence in CA1 pyramidal neurons of the hippocampus; (2) activation of astrocytes and microglia, assessed through western blot and immunohistochemistry; (3) upregulation of proinflammatory cytokines, specifically interleukin-1ß (IL-1ß), interleukin-6, and tumor necrosis factor α, revealed by qPCR; and (4) enhanced expression of NLRP3, assessed by western blot, together with increased NLRP3 activation, showed by IL-1ß quantification. CONCLUSIONS: Thus, organotypic slice cultures gradually deprived of serum mimic the epileptic-like activity, as well as the inflammatory events associated with in vivo epilepsy. This system can be considered a new tool to explore the interplay between neuroinflammation and epilepsy and to screen potential drug candidates, within the inflammatory cascades, to reduce/halt epileptogenesis.


Assuntos
Anticonvulsivantes/uso terapêutico , Citocinas/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/patologia , Hipocampo/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Compostos de Boro/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Meios de Cultura Livres de Soro/toxicidade , Citocinas/genética , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Epilepsia/induzido quimicamente , Epilepsia/complicações , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Gliose/patologia , Hipocampo/patologia , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Técnicas de Cultura de Órgãos , Gravidez , Ratos , Ratos Sprague-Dawley , Espectrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA