Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nephron ; 148(7): 487-502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354720

RESUMO

INTRODUCTION: Several mouse models with diverse disease etiologies are used in preclinical research for chronic kidney disease (CKD). Here, we performed a head-to-head comparison of renal transcriptome signatures in standard mouse models of CKD to assess shared and distinct molecular changes in three mouse models commonly employed in preclinical CKD research and drug discovery. METHODS: All experiments were conducted on male C57BL/6J mice. Mice underwent sham, unilateral ureter obstruction (UUO), or unilateral ischemic-reperfusion injury (uIRI) surgery and were terminated two- and 6-weeks post-surgery, respectively. The adenine-supplemented diet-induced (ADI) model of CKD was established by feeding with adenine diet for 6 weeks and compared to control diet feeding. For all models, endpoints included plasma biochemistry, kidney histology, and RNA sequencing. RESULTS: All models displayed increased macrophage infiltration (F4/80 IHC) and fibrosis (collagen 1a1 IHC). Compared to corresponding controls, all models were characterized by an extensive number of renal differentially expressed genes (≥11,000), with a notable overlap in transcriptomic signatures across models. Gene expression markers of fibrosis, inflammation, and kidney injury supported histological findings. Interestingly, model-specific transcriptome signatures included several genes representing current drug targets for CKD, emphasizing advantages and limitations of the three CKD models in preclinical target and drug discovery. CONCLUSION: The UUO, uIRI, and ADI mouse models of CKD have significant commonalities in their renal global transcriptome profile. Model-specific renal transcriptional signatures should be considered when selecting the specific model in preclinical target and drug discovery.


Assuntos
Modelos Animais de Doenças , Rim , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica , Transcriptoma , Animais , Masculino , Camundongos , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Rim/patologia , Rim/metabolismo , Fibrose , Obstrução Ureteral/genética , Obstrução Ureteral/complicações , Traumatismo por Reperfusão/genética
2.
Expert Opin Drug Deliv ; 20(8): 1071-1084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609943

RESUMO

INTRODUCTION: Respiratory diseases represent a worldwide health issue. The recent Sars-CoV-2 pandemic, the burden of lung cancer, and inflammatory respiratory diseases urged the development of innovative therapeutic solutions. In this context, therapeutic antibodies (Abs) offer a tremendous opportunity to benefit patients with respiratory diseases. Delivering Ab through the airways has been demonstrated to be relevant to improve their therapeutic index. However, few inhaled Abs are on the market. AREAS COVERED: This review describes the different barriers that may alter the fate of inhaled therapeutic Abs in the lungs at steady state. It addresses both physical and biological barriers and discusses the importance of taking into consideration the pathological changes occurring during respiratory disease, which may reinforce these barriers. EXPERT OPINION: The pulmonary route remains rare for delivering therapeutic Abs, with few approved inhaled molecules, despite promising evidence. Efforts must focus on the intertwined barriers associated with lung diseases to develop appropriate Ab-formulation-device combo, ensuring optimal Ab deposition in the respiratory tract. Finally, randomized controlled clinical trials should be carried out to establish inhaled Ab therapy as prominent against respiratory diseases.


Assuntos
Pneumopatias , Pulmão , Humanos , Administração por Inalação , Pneumopatias/tratamento farmacológico
3.
J Crohns Colitis ; 17(1): 111-122, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35917251

RESUMO

BACKGROUND AND AIMS: NOD2 has emerged as a critical player in the induction of both Th1 and Th2 responses for potentiation and polarisation of antigen-dependent immunity. Loss-of-function mutations in the NOD2-encoding gene and deregulation of its downstream signalling pathway have been linked to Crohn's disease. Although it is well documented that NOD2 is capable of sensing bacterial muramyl dipeptide, it remains counter-intuitive to link development of overt intestinal inflammation to a loss of bacterial-induced inflammatory response. We hypothesised that a T helper bias could also contribute to an autoimmune-like colitis different from inflammation that is fully fledged by Th1 type cells. METHODS: An oedematous bowel wall with a mixed Th1/Th2 response was induced in mice by intrarectal instillation of the haptenating agent oxazolone. Survival and clinical scoring were evaluated. At several time points after instillation, colonic damage was assessed by macroscopic and microscopic observations. To evaluate the involvement of NOD2 in immunochemical phenomena, quantitative polymerase chain reaction [PCR] and flow cytometry analysis were performed. Bone marrow chimera experimentation allowed us to evaluate the role of haematopoietic/non-hematopoietic NOD2-expressing cells. RESULTS: Herein, we identified a key regulatory circuit whereby NOD2-mediated sensing of a muramyl dipeptide [MDP] by radio-resistant cells improves colitis with a mixed Th1/Th2 response that is induced by oxazolone. Genetic ablation of either Nod2 or Ripk2 precipitated oxazolone colitis that is predominantly linked to a lack of interferon-gamma. Bone marrow chimera experiments revealed that inactivation of Nod2 signalling in non-haematopoietic cells is causing a biased M1-M2 polarisation of macrophages and a decreased frequency of splenic regulatory T cells that correlates with an impaired activation of CD4 + T cells within mesenteric lymph nodes. Mechanistically, mice were protected from oxazolone-induced colitis upon administration of MDP in an interleukin-1- and interleukin-23-dependent manner. CONCLUSIONS: These findings indicate that Nod2 signalling may prevent pathological conversion of T helper cells for maintenance of tissue homeostasis.


Assuntos
Colite , Oxazolona , Camundongos , Animais , Oxazolona/efeitos adversos , Acetilmuramil-Alanil-Isoglutamina/efeitos adversos , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Colite/metabolismo , Inflamação , Transdução de Sinais , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo
4.
Biomedicines ; 10(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884965

RESUMO

Background: Obesity, hyperglycemia and hypertension are critical risk factors for development of diabetic kidney disease (DKD). Emerging evidence suggests that glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular and renal outcomes in type 2 diabetes patients. Here, we characterized the effect of the long-acting GLP-1R agonist semaglutide alone and in combination with an ACE inhibitor (lisinopril) in a model of hypertension-accelerated, advanced DKD facilitated by adeno-associated virus-mediated renin overexpression (ReninAAV) in uninephrectomized (UNx) female diabetic db/db mice. Methods: Female db/db mice received a single intravenous injection of ReninAAV 1 week prior to UNx. Six weeks post-nephrectomy, db/db UNx-ReninAAV mice were administered (q.d.) vehicle, semaglutide (30 nmol/kg, s.c.) or semaglutide (30 nmol/kg, s.c.) + lisinopril (30 mg/kg, p.o.) for 11 weeks. Endpoints included blood pressure, plasma/urine biochemistry, kidney histopathology and RNA sequencing. Results: Vehicle-dosed db/db UNx-ReninAAV mice developed hallmarks of DKD characterized by severe albuminuria and advanced glomerulosclerosis. Semaglutide robustly reduced hyperglycemia, hypertension and albuminuria concurrent with notable improvements in glomerulosclerosis severity, podocyte filtration slit density, urine/renal kidney injury molecule-1 (KIM-1) levels and gene expression markers of inflammation and fibrogenesis in db/db UNx-ReninAAV mice. Co-administration of lisinopril further ameliorated hypertension and glomerulosclerosis. Conclusions: Semaglutide improves disease hallmarks in the db/db UNx-ReninAAV mouse model of advanced DKD. Further benefits on renal outcomes were obtained by adjunctive antihypertensive standard of care. Collectively, our study supports the development of semaglutide for management of DKD.

5.
Front Immunol ; 13: 1086413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605196

RESUMO

Introduction: Confronted with the emerging threat of antimicrobial resistance, the development of alternative strategies to limit the use of antibiotics or potentiate their effect through synergy with the immune system is urgently needed. Many natural or synthetic biological response modifiers have been investigated in this context. Among them, ß-glucans, a type of soluble or insoluble polysaccharide composed of a linear or branched string of glucose molecules produced by various cereals, bacteria, algae, and inferior (yeast) and superior fungi (mushrooms) have garnered interest in the scientific community, with not less than 10,000 publications over the last two decades. Various biological activities of ß-glucans have been reported, such as anticancer, antidiabetic and immune-modulating effects. In vitro, yeast ß-glucans are known to markedly increase cytokine secretion of monocytes/macrophages during a secondary challenge, a phenomenon called immune training. Methods: Here, we orally delivered ß-glucans derived from the yeast S. cerevisiae to mice that were further challenged with Escherichia coli. Results: ß-glucan supplementation protected the mice from E. coli intraperitoneal and intra-mammary infections, as shown by a lower bacterial burden and greatly diminished tissue damage. Surprisingly, this was not associated with an increased local immune response. In addition, granulocyte recruitment was transient and limited, as well as local cytokine secretion, arguing for faster resolution of the inflammatory response. Furthermore, ex-vivo evaluation of monocytes/macrophages isolated or differentiated from ß-glucan-supplemented mice showed these cells to lack a trained response versus those from control mice. Conclusion: In conclusion, dietary ß-glucans can improve the outcome of Escherichia coli infections and dampen tissue damages associated to excessive inflammatory response. The mechanisms associated with such protection are not necessarily linked to immune system hyper-activation or immune training.


Assuntos
Fermento Seco , beta-Glucanas , Camundongos , Animais , beta-Glucanas/farmacologia , Saccharomyces cerevisiae , Escherichia coli , Monócitos , Macrófagos , Citocinas
6.
Dis Model Mech ; 14(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494644

RESUMO

The current understanding of molecular mechanisms driving diabetic kidney disease (DKD) is limited, partly due to the complex structure of the kidney. To identify genes and signalling pathways involved in the progression of DKD, we compared kidney cortical versus glomerular transcriptome profiles in uninephrectomized (UNx) db/db mouse models of early-stage (UNx only) and advanced [UNxplus adeno-associated virus-mediated renin-1 overexpression (UNx-Renin)] DKD using RNAseq. Compared to normoglycemic db/m mice, db/db UNx and db/db UNx-Renin mice showed marked changes in their kidney cortical and glomerular gene expression profiles. UNx-Renin mice displayed more marked perturbations in gene components associated with the activation of the immune system and enhanced extracellular matrix remodelling, supporting histological hallmarks of progressive DKD in this model. Single-nucleus RNAseq enabled the linking of transcriptome profiles to specific kidney cell types. In conclusion, integration of RNAseq at the cortical, glomerular and single-nucleus level provides an enhanced resolution of molecular signalling pathways associated with disease progression in preclinical models of DKD, and may thus be advantageous for identifying novel therapeutic targets in DKD.


Assuntos
Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Perfilação da Expressão Gênica , Hipertensão/complicações , Animais , Dependovirus/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Córtex Renal/metabolismo , Córtex Renal/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos Endogâmicos C57BL , Renina/metabolismo
7.
Pharmaceutics ; 13(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205484

RESUMO

Several types of antibodies (Abs) are currently used in non-small cell lung cancer (NSCLC). Anti-angiogenic and immune checkpoint inhibitor (ICI) Abs are the most frequent treatments used alone or with chemotherapy in metastatic NSCLC, for the front line and beyond. Considering the many therapeutic options for locally advanced and metastatic lung cancer and differences in use according to geographic area, we present here a comprehensive review of the marketed ICI and anti-angiogenic Abs approved in the European Union (EU) and the US to treat locally advanced and metastatic NSCLC patients. We briefly describe the different molecules and their development in thoracic oncology and compare pharmacokinetic data, processing decision algorithms and marketing authorizations by the EMA and US Food and Drug Administration (FDA).

8.
Am J Physiol Renal Physiol ; 321(2): F149-F161, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180715

RESUMO

Hypertension is a critical comorbidity for progression of diabetic kidney disease (DKD). To facilitate the development of novel therapeutic interventions with the potential to control disease progression, there is a need to establish translational animal models that predict treatment effects in human DKD. The present study aimed to characterize renal disease and outcomes of standard of medical care in a model of advanced DKD facilitated by adeno-associated virus (AAV)-mediated renin overexpression in uninephrectomized (UNx) db/db mice. Five weeks after single AAV administration and 4 wk after UNx, female db/db UNx-ReninAAV mice received (PO, QD) vehicle, lisinopril (40 mg/kg), empagliflozin (20 mg/kg), or combination treatment for 12 wk (n = 17 mice/group). Untreated db/+ mice (n = 8) and vehicle-dosed db/db UNx-LacZAAV mice (n = 17) served as controls. End points included plasma, urine, and histomorphometric markers of kidney disease. Total glomerular numbers and individual glomerular volume were evaluated by whole kidney three-dimensional imaging analysis. db/db UNx-ReninAAV mice developed hallmarks of progressive DKD characterized by severe albuminuria, advanced glomerulosclerosis, and glomerular hypertrophy. Lisinopril significantly improved albuminuria, glomerulosclerosis, tubulointerstitial injury, and inflammation. Although empagliflozin alone had no therapeutic effect on renal endpoints, lisinopril and empagliflozin exerted synergistic effects on renal histological outcomes. In conclusion, the db/db UNx-ReninAAV mouse demonstrates good clinical translatability with respect to physiological and histological hallmarks of progressive DKD. The efficacy of standard of care to control hypertension and hyperglycemia provides a proof of concept for testing novel drug therapies in the model.NEW & NOTEWORTHY Translational animal models of diabetic kidney disease (DKD) are important tools in preclinical research and drug discovery. Here, we show that the standard of care to control hypertension (lisinopril) and hyperglycemia (empagliflozin) improves physiological and histopathological hallmarks of kidney disease in a mouse model of hypertension-accelerated progressive DKD. The findings substantiate hypertension and type 2 diabetes as essential factors in driving DKD progression and provide a proof of concept for probing novel drugs for potential nephroprotective efficacy in this model.


Assuntos
Anti-Hipertensivos/uso terapêutico , Compostos Benzidrílicos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Glucosídeos/uso terapêutico , Hipertensão/tratamento farmacológico , Lisinopril/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Animais , Anti-Hipertensivos/farmacologia , Compostos Benzidrílicos/farmacologia , Nefropatias Diabéticas/complicações , Modelos Animais de Doenças , Feminino , Glucosídeos/farmacologia , Hipertensão/complicações , Lisinopril/farmacologia , Camundongos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Resultado do Tratamento
9.
Immunohorizons ; 5(5): 273-283, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958388

RESUMO

Cystic fibrosis is associated with chronic Pseudomonas aeruginosa colonization and inflammation. The role of MyD88, the shared adapter protein of the proinflammatory TLR and IL-1R families, in chronic P. aeruginosa biofilm lung infection is unknown. We report that chronic lung infection with the clinical P. aeruginosa RP73 strain is associated with uncontrolled lung infection in complete MyD88-deficient mice with epithelial damage, inflammation, and rapid death. Then, we investigated whether alveolar or myeloid cells contribute to heightened sensitivity to infection. Using cell-specific, MyD88-deficient mice, we uncover that the MyD88 pathway in myeloid or alveolar epithelial cells is dispensable, suggesting that other cell types may control the high sensitivity of MyD88-deficient mice. By contrast, IL-1R1-deficient mice control chronic P. aeruginosa RP73 infection and IL-1ß Ab blockade did not reduce host resistance. Therefore, the IL-1R1/MyD88 pathway is not involved, but other IL-1R or TLR family members need to be investigated. Our data strongly suggest that IL-1 targeted neutralizing therapies used to treat inflammatory diseases in patients unlikely reduce host resistance to chronic P. aeruginosa infection.


Assuntos
Interleucina-1beta/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Receptores Tipo I de Interleucina-1/imunologia , Animais , Humanos , Imunidade Inata , Interleucina-1beta/genética , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Infecções por Pseudomonas/metabolismo , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais , Receptores Toll-Like/imunologia
10.
Vaccines (Basel) ; 9(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668613

RESUMO

Respiratorytract infections (RTIs) are frequent and life-threatening diseases, accounting for several millions of deaths worldwide. RTIs implicate microorganisms, including viruses (influenza virus, coronavirus, respiratory syncytial virus (RSV)), bacteria (Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus and Bacillus anthracis) and fungi (Pneumocystis spp., Aspergillus spp. and very occasionally Candida spp.). The emergence of new pathogens, like the coronavirus SARS-CoV-2, and the substantial increase in drug resistance have highlighted the critical necessity to develop novel anti-infective molecules. In this context, antibodies (Abs) are becoming increasingly important in respiratory medicine and may fulfill the unmet medical needs of RTIs. However, development of Abs for treating infectious diseases is less advanced than for cancer and inflammatory diseases. Currently, only three Abs have been marketed for RTIs, namely, against pulmonary anthrax and RSV infection, while several clinical and preclinical studies are in progress. This article gives an overview of the advances in the use of Abs for the treatment of RTIs, based on the analysis of clinical studies in this field. It describes the Ab structure, function and pharmacokinetics, and discusses the opportunities offered by the various Ab formats, Ab engineering and co-treatment strategies. Including the most recent literature, it finally highlights the strengths, weaknesses and likely future trends of a novel anti-RTI Ab armamentarium.

11.
Sci Rep ; 10(1): 16130, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999377

RESUMO

Cardiovascular and renal complications are the predominant causes of morbidity and mortality amongst patients with diabetes. Development of novel treatments have been hampered by the lack of available animal models recapitulating the human disease. We hypothesized that experimental diabetes in rats combined with a cardiac or renal stressor, would mimic diabetic cardiomyopathy and nephropathy, respectively. Diabetes was surgically induced in male Sprague Dawley rats by 90% pancreatectomy (Px). Isoprenaline (Iso, 1 mg/kg, sc., 10 days) was administered 5 weeks after Px with the aim of inducing cardiomyopathy, and cardiac function and remodeling was assessed by echocardiography 10 weeks after surgery. Left ventricular (LV) fibrosis was quantified by Picro Sirius Red and gene expression analysis. Nephropathy was induced by Px combined with uninephrectomy (Px-UNx). Kidney function was assessed by measurement of glomerular filtration rate (GFR) and urine albumin excretion, and kidney injury was evaluated by histopathology and gene expression analysis. Px resulted in stable hyperglycemia, hypoinsulinemia, decreased C-peptide, and increased glycated hemoglobin (HbA1c) compared with sham-operated controls. Moreover, Px increased heart and LV weights and dimensions and caused a shift from α-myosin heavy chain (MHC) to ß-MHC gene expression. Isoprenaline treatment, but not Px, decreased ejection fraction and induced LV fibrosis. There was no apparent interaction between Px and Iso treatment. The superimposition of Px and UNx increased GFR, indicating hyperfiltration. Compared with sham-operated controls, Px-UNx induced albuminuria and increased urine markers of kidney injury, including neutrophil gelatinase-associated lipocalin (NGAL) and podocalyxin, concomitant with upregulated renal gene expression of NGAL and kidney injury molecule 1 (KIM-1). Whereas Px and isoprenaline separately produced clinical endpoints related to diabetic cardiomyopathy, the combination of the two did not accentuate disease development. Conversely, Px in combination with UNx resulted in several clinical hallmarks of diabetic nephropathy indicative of early disease development.


Assuntos
Cardiomiopatias Diabéticas/patologia , Nefropatias Diabéticas/patologia , Pancreatectomia/métodos , Albuminúria/complicações , Animais , Peptídeo C/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Fibrose , Taxa de Filtração Glomerular , Coração/fisiopatologia , Isoproterenol/farmacologia , Rim/metabolismo , Lipocalina-2/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal/complicações
12.
Kidney360 ; 1(6): 469-479, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35368599

RESUMO

Background: Glomerular hypertrophy is a hallmark of kidney injury in metabolically induced renal diseases such as obesity-associated glomerulopathies and diabetic nephropathy (DN). Methods: Using light sheet fluorescent microscopy (LSFM) and 3D image analysis, we tested algorithms for automated and unbiased quantification of total glomerular numbers and individual glomerular volume in the uninephrectomized (UNx) db/db mouse model of DN. Results: At 6 weeks after surgery, db/db and UNx db/db mice showed increased urine albumin-to-creatinine ratio (ACR) compared with db/+ control mice. Before euthanasia, glomeruli were labeled in vivo by injecting tomato lectin. Whole-kidney LSFM 3D image analysis revealed that mean glomerular volume was significantly increased in UNx db/db mice compared with db/+ mice. Moreover, analysis of individual glomerular volume showed a shift in volume distribution toward larger glomeruli and thereby demonstrated additive effects of diabetes and UNx on induction of glomerular hypertrophy. The automatized quantification showed no significant differences in glomerular numbers among db/+, db/db, and UNx db/db mice. These data correlated with glomerular numbers as quantified by subsequent stereologic quantification. Conclusions: Overall, LSFM coupled with automated 3D histomorphometric analysis was demonstrated to be advantageous for unbiased assessment of glomerular volume and numbers in mouse whole-kidney samples. Furthermore, we showed that injection of fluorescently labeled lectin and albumin can be used as markers of nephron segments in the mouse kidneys, thus enabling functional assessment of kidney physiology, pathology, and pharmacology in preclinical rodent models of kidney disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Diabetes Mellitus/patologia , Nefropatias Diabéticas/patologia , Hipertrofia/patologia , Rim/patologia , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos
13.
PLoS Pathog ; 15(9): e1008029, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545853

RESUMO

Although Escherichia coli Nissle 1917 (EcN) has been used therapeutically for over a century, the determinants of its probiotic properties remain elusive. EcN produces two siderophore-microcins (Mcc) responsible for an antagonistic activity against other Enterobacteriaceae. EcN also synthesizes the genotoxin colibactin encoded by the pks island. Colibactin is a virulence factor and a putative pro-carcinogenic compound. Therefore, we aimed to decouple the antagonistic activity of EcN from its genotoxic activity. We demonstrated that the pks-encoded ClbP, the peptidase that activates colibactin, is required for the antagonistic activity of EcN. The analysis of a series of ClbP mutants revealed that this activity is linked to the transmembrane helices of ClbP and not the periplasmic peptidase domain, indicating the transmembrane domain is involved in some aspect of Mcc biosynthesis or secretion. A single amino acid substitution in ClbP inactivates the genotoxic activity but maintains the antagonistic activity. In an in vivo salmonellosis model, this point mutant reduced the clinical signs and the fecal shedding of Salmonella similarly to the wild type strain, whereas the clbP deletion mutant could neither protect nor outcompete the pathogen. The ClbP-dependent antibacterial effect was also observed in vitro with other E. coli strains that carry both a truncated form of the Mcc gene cluster and the pks island. In such strains, siderophore-Mcc synthesis also required the glucosyltransferase IroB involved in salmochelin production. This interplay between colibactin, salmochelin, and siderophore-Mcc biosynthetic pathways suggests that these genomic islands were co-selected and played a role in the evolution of E. coli from phylogroup B2. This co-evolution observed in EcN illustrates the fine margin between pathogenicity and probiotic activity, and the need to address both the effectiveness and safety of probiotics. Decoupling the antagonistic from the genotoxic activity by specifically inactivating ClbP peptidase domain opens the way to the safe use of EcN.


Assuntos
Escherichia coli/fisiologia , Mutagênicos/toxicidade , Probióticos/uso terapêutico , Animais , Antibiose/genética , Antibiose/fisiologia , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/toxicidade , Vias Biossintéticas/genética , Enterobactina/análogos & derivados , Enterobactina/genética , Enterobactina/fisiologia , Enterobactina/toxicidade , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Feminino , Genes Bacterianos , Ilhas Genômicas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Família Multigênica , Mutação , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/fisiologia , Peptídeos/genética , Peptídeos/fisiologia , Peptídeos/toxicidade , Policetídeos/toxicidade , Probióticos/toxicidade , Domínios Proteicos , Salmonelose Animal/microbiologia , Salmonelose Animal/terapia , Salmonella typhimurium , Sideróforos/genética , Sideróforos/fisiologia , Sideróforos/toxicidade , Fatores de Virulência/genética , Fatores de Virulência/fisiologia , Fatores de Virulência/toxicidade
14.
J Control Release ; 303: 24-33, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-30981816

RESUMO

Due to growing antibiotic resistance, pneumonia caused by Pseudomonas aeruginosa is a major threat to human health and is driving the development of novel anti-infectious agents. Preventively or curatively administered pathogen-specific therapeutic antibodies (Abs) have several advantages, including a low level of toxicity and a unique pharmacological profile. At present, most Abs against respiratory infections are administered parenterally; this may not be optimal for therapeutics that have to reach the lungs to be effective. Although the airways constitute a logical delivery route for biologics designed to treat respiratory diseases, there are few scientific data on the advantages or disadvantages of this route in the context of pneumonia treatment. The objective of the present study was to evaluate the efficacy and fate of an anti-P. aeruginosa Ab targeting pcrV (mAb166) as a function of the administration route during pneumonia. The airway-administered mAb166 displayed a favorable pharmacokinetic profile during the acute phase of the infection, and was associated with greater protection (relative to other delivery routes) of infected animals. Airway administration was associated with lower levels of lung inflammation, greater bacterial clearance, and recruitment of neutrophils in the airways. In conclusion, the present study is the first to have compared the pharmacokinetics and efficacy of an anti-infectious Ab administered by different routes in an animal model of pneumonia. Our findings suggest that local delivery to the airways is associated with a more potent anti-bacterial response (relative to parenteral administration), and thus open up new perspectives for the prevention and treatment of pneumonia with Abs.


Assuntos
Anticorpos Antibacterianos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Infecções Respiratórias/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacocinética , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Contagem de Células , Citocinas/imunologia , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Pulmão/metabolismo , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Infecções Respiratórias/imunologia , Infecções Respiratórias/metabolismo
15.
Gut ; 68(7): 1190-1199, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30279238

RESUMO

OBJECTIVE: Loss of the Crohn's disease predisposing NOD2 gene results in an intestinal microenvironment conducive for colonisation by attaching-and-effacing enteropathogens. However, it remains elusive whether it relies on the intracellular recruitment of the serine-threonine kinase RIPK2 by NOD2, a step that is required for its activation of the transcription factor NF-κB. DESIGN: Colonisation resistance was evaluated in wild type and mutant mice, as well as in ex-germ-free (ex-GF) mice which were colonised either with faeces from Ripk2-deficient mice or with bacteria with similar preferences for carbohydrates to those acquired by the pathogen. The severity of the mucosal pathology was quantified at several time points postinfection by using a previously established scoring. The community resilience in response to infection was evaluated by 16S ribosomal RNA gene sequence analysis. The control of pathogen virulence was evaluated by monitoring the secretion of Citrobacter-specific antibody response in the faeces. RESULTS: Primary infection was similarly outcompeted in ex-GF Ripk2-deficient and control mice, demonstrating that the susceptibility to infection resulting from RIPK2 deficiency cannot be solely attributed to specific microbiota community structures. In contrast, delayed clearance of Citrobacter rodentium and exacerbated histopathology were preceded by a weakened propensity of intestinal macrophages to afford innate lymphoid cell activation. This tissue protection unexpectedly required the regenerating family member 3ß by instigating interleukin (IL) 17A-mediated neutrophil recruitment to the intestine and subsequent phosphorylation of signal transducer and activator of transcription 3. CONCLUSIONS: These results unveil a previously unrecognised mechanism that efficiently protects from colonisation by diarrhoeagenic bacteria early in infection.


Assuntos
Doença de Crohn/microbiologia , Doença de Crohn/patologia , Infecções por Enterobacteriaceae/prevenção & controle , Interleucina-17/fisiologia , Infiltração de Neutrófilos/fisiologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Citrobacter rodentium , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/patologia , Mucosa Intestinal/patologia , Camundongos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Transdução de Sinais
16.
Mol Metab ; 6(7): 681-692, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28702324

RESUMO

OBJECTIVE: The prevalence of obesity and related co-morbidities is reaching pandemic proportions. Today, the most effective obesity treatments are glucagon-like peptide 1 (GLP-1) analogs and bariatric surgery. Interestingly, both intervention paradigms have been associated with adaptive growth responses in the gut; however, intestinotrophic mechanisms associated with or secondary to medical or surgical obesity therapies are poorly understood. Therefore, the objective of this study was to assess the local basal endogenous and pharmacological intestinotrophic effects of glucagon-like peptides and bariatric surgery in mice. METHODS: We used in situ hybridization to provide a detailed and comparative anatomical map of the local distribution of GLP-1 receptor (Glp1r), GLP-2 receptor (Glp2r), and preproglucagon (Gcg) mRNA expression throughout the mouse gastrointestinal tract. Gut development in GLP-1R-, GLP-2R-, or GCG-deficient mice was compared to their corresponding wild-type controls, and intestinotrophic effects of GLP-1 and GLP-2 analogs were assessed in wild-type mice. Lastly, gut volume was determined in a mouse model of vertical sleeve gastrectomy (VSG). RESULTS: Comparison of Glp1r, Glp2r, and Gcg mRNA expression indicated a widespread, but distinct, distribution of these three transcripts throughout all compartments of the mouse gastrointestinal tract. While mice null for Glp1r or Gcg showed normal intestinal morphology, Glp2r-/- mice exhibited a slight reduction in small intestinal mucosa volume. Pharmacological treatment with GLP-1 and GLP-2 analogs significantly increased gut volume. In contrast, VSG surgery had no effect on intestinal morphology. CONCLUSION: The present study indicates that the endogenous preproglucagon system, exemplified by the entire GCG gene and the receptors for GLP-1 and GLP-2, does not play a major role in normal gut development in the mouse. Furthermore, elevation in local intestinal and circulating levels of GLP-1 and GLP-2 achieved after VSG has limited impact on intestinal morphometry. Hence, although exogenous treatment with GLP-1 and GLP-2 analogs enhances gut growth, the contributions of endogenously-secreted GLP-1 and GLP-2 to gut growth may be more modest and highly context-dependent.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , Homeostase , Intestinos/crescimento & desenvolvimento , Proglucagon/metabolismo , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proglucagon/genética
17.
mBio ; 8(2)2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28292979

RESUMO

An increasing number of human beings from developed countries are colonized by Escherichia coli strains producing colibactin, a genotoxin suspected to be associated with the development of colorectal cancers. Deoxynivalenol (DON) is the most prevalent mycotoxin that contaminates staple food-especially cereal products-in Europe and North America. This study investigates the effect of the food contaminant DON on the genotoxicity of the E. coli strains producing colibactin. In vitro, intestinal epithelial cells were coexposed to DON and E. coli producing colibactin. In vivo, newborn rats colonized at birth with E. coli producing colibactin were fed a DON-contaminated diet. Intestinal DNA damage was estimated by the phosphorylation of histone H2AX. DON exacerbates the genotoxicity of the E. coli producing colibactin in a time- and dose-dependent manner in vitro Although DON had no effect on the composition of the gut microbiota, and especially on the number of E. coli, a significant increase in DNA damage was observed in intestinal epithelial cells of animals colonized by E. coli strains producing colibactin and coexposed to DON compared to animals colonized with E. coli strains unable to produce colibactin or animals exposed only to DON. In conclusion, our data demonstrate that the genotoxicity of E. coli strains producing colibactin, increasingly present in the microbiota of asymptomatic human beings, is modulated by the presence of DON in the diet. This raises questions about the synergism between food contaminants and gut microbiota with regard to intestinal carcinogenesis.IMPORTANCE An increasing number of human beings from developed countries are colonized by Escherichia coli strains producing colibactin, a genotoxin suspected to be associated with the development of colorectal cancers. Deoxynivalenol (DON) is the most prevalent mycotoxin that contaminates staple food-especially cereal products-in Europe and North America. Our in vitro and in vivo results demonstrate that the intestinal DNA damage induced by colibactin-producing E. coli strains was exacerbated by the presence of DON in the diet. This raises questions about the synergism between food contaminants and gut microbiota with regard to intestinal carcinogenesis.


Assuntos
Dano ao DNA/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Trato Gastrointestinal/microbiologia , Mutagênicos/toxicidade , Peptídeos/toxicidade , Policetídeos/toxicidade , Tricotecenos/metabolismo , Animais , Técnicas de Cocultura , Células Epiteliais/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Histonas/análise , Ratos
18.
Cell Rep ; 16(8): 2208-2218, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524624

RESUMO

A plethora of functional and genetic studies have suggested a key role for the IL-23 pathway in chronic intestinal inflammation. Currently, pathogenic actions of IL-23 have been ascribed to specific effects on immune cells. Herein, we unveil a protective role of IL-23R signaling. Mice deficient in IL-23R expression in intestinal epithelial cells (Il23R(ΔIEC)) have reduced Reg3b expression, show a disturbed colonic microflora with an expansion of flagellated bacteria, and succumb to DSS colitis. Surprisingly, Il23R(ΔIEC) mice show impaired mucosal IL-22 induction in response to IL-23. αThy-1 treatment significantly deteriorates colitis in Il23R(ΔIEC) animals, which can be rescued by IL-22 application. Importantly, exogenous Reg3b administration rescues DSS-treated Il23R(ΔIEC) mice by recruiting neutrophils as IL-22-producing cells, thereby restoring mucosal IL-22 levels. The study identifies a critical barrier-protective immune pathway that originates from, and is orchestrated by, IL-23R signaling in intestinal epithelial cells.


Assuntos
Colite/imunologia , Disbiose/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Receptores de Interleucina/imunologia , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Sulfato de Dextrana , Disbiose/tratamento farmacológico , Disbiose/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Granulócitos/microbiologia , Interleucina-23/farmacologia , Interleucinas/genética , Interleucinas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Isoanticorpos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/imunologia , Proteínas Associadas a Pancreatite/farmacologia , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Células-Tronco/microbiologia , Interleucina 22
19.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G123-9, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288422

RESUMO

The intestinal microbiota exerts vital biological processes throughout the human lifetime, and imbalances in its composition have been implicated in both health and disease status. Upon birth, the neonatal gut moves from a barely sterile to a massively colonized environment. The development of the intestinal microbiota during the first year of life is characterized by rapid and important changes in microbial composition, diversity, and magnitude. The pioneer bacteria colonizing the postnatal intestinal tract profoundly contribute to the establishment of the host-microbe symbiosis, which is essential for health throughout life. Escherichia coli is one of the first colonizers of the gut after birth. E. coli is a versatile population including harmless commensal, probiotic strains as well as frequently deadly pathogens. The prevalence of the specific phylogenetic B2 group, which encompasses both commensal and extra- or intraintestinal pathogenic E. coli strains, is increasing among E. coli strains colonizing infants quickly after birth. Fifty percent of the B2 group strains carry in their genome the pks gene cluster encoding the synthesis of a nonribosomal peptide-polyketide hybrid genotoxin named colibactin. In this review, we summarize both clinical and experimental evidence associating the recently emerging neonatal B2 E. coli population with several pathology and discuss how the expression of colibactin by both normal inhabitants of intestinal microflora and virulent strains may darken the borderline between commensalism and pathogenicity.


Assuntos
Escherichia coli/patogenicidade , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Animais , Escherichia coli/classificação , Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Recém-Nascido , Peptídeos/metabolismo , Policetídeos/metabolismo , Simbiose , Virulência
20.
Peptides ; 69: 47-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25849341

RESUMO

AIMS/HYPOTHESIS: Combination treatment with exendin-4 and gastrin has proven beneficial in treatment of diabetes and preservation of beta cell mass in diabetic mice. Here, we examined the chronic effects of a GLP-1-gastrin dual agonist ZP3022 on glycemic control and beta cell dysfunction in overtly diabetic Zucker Diabetic Fatty (ZDF) rats. METHODS: ZDF rats aged 11 weeks were dosed s.c., b.i.d. for 8 weeks with vehicle, ZP3022, liraglutide, exendin-4, or gastrin-17 with or without exendin-4. Glycemic control was assessed by measurements of HbA1c and blood glucose levels, as well as glucose tolerance during an oral glucose tolerance test (OGTT). Beta cell dynamics were examined by morphometric analyses of beta and alpha cell fractions. RESULTS: ZP3022 improved glycemic control as measured by terminal HbA1c levels (6.2±0.12 (high dose) vs. 7.9±0.07% (vehicle), P<0.001), as did all treatments, except gastrin-17 monotherapy. In contrast, only ZP3022, exendin-4 and combination treatment with exendin-4 and gastrin-17 significantly improved glucose tolerance and increased insulin levels during an OGTT. Moreover, only ZP3022 significantly enhanced the beta cell fraction in ZDF rats, a difference of 41%, when compared to the vehicle group (0.31±0.03 vs. 0.22±0.02%, respectively, P<0.05). CONCLUSION: These data suggest that ZP3022 may have therapeutic potential in the prevention/delay of beta cell dysfunction in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Gastrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeos/administração & dosagem , Animais , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Gastrinas/agonistas , Peptídeo 1 Semelhante ao Glucagon/agonistas , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Ratos , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA