Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 984, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194040

RESUMO

Black carbon (BC) from fossil fuel and biomass combustion darkens the snow and makes it melt sooner. The BC footprint of research activities and tourism in Antarctica has likely increased as human presence in the continent has surged in recent decades. Here, we report on measurements of the BC concentration in snow samples from 28 sites across a transect of about 2,000 km from the northern tip of Antarctica (62°S) to the southern Ellsworth Mountains (79°S). Our surveys show that BC content in snow surrounding research facilities and popular shore tourist-landing sites is considerably above background levels measured elsewhere in the continent. The resulting radiative forcing is accelerating snow melting and shrinking the snowpack on BC-impacted areas on the Antarctic Peninsula and associated archipelagos by up to 23 mm water equivalent (w.e.) every summer.


Assuntos
Pegada de Carbono , Monitoramento Ambiental , Regiões Antárticas , Carbono/análise , Humanos , Neve , Fuligem/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-27690069

RESUMO

In a recent study, melanoma incidence rates for Austrian inhabitants living at higher altitudes were found to increase by as much as 30% per 100 m altitude. This strong increase cannot simply be explained by the known increase of erythemally-weighted irradiance with altitude, which ranges between 0.5% and 4% per 100 m. We assume that the discrepancy is partially explainable by upwelling UV radiation; e.g., reflected by snow-covered surfaces. Therefore, we present an approach where the human UV exposure is derived by integrating incident radiation over the 3D geometry of a human body, which enables us to take upwelling radiation into account. Calculating upwelling and downwelling radiance with a radiative transfer model for a snow-free valley and for snow-covered mountain terrain (with albedo of 0.6) yields an increase in UV exposure by 10% per 100 m altitude. The results imply that upwelling radiation plays a significant role in the increase of melanoma incidence with altitude.

4.
Anticancer Res ; 36(3): 1423-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26977046

RESUMO

BACKGROUND/AIM: The angular distribution of solar radiance and its spectral characteristics is required for the determination of vitamin D3 production in humans. MATERIALS AND METHODS: The vitamin D3 weighted exposure can be calculated by integrating the incident solar spectral radiance over all relevant parts of the human body. A novel instrument allowing simultaneous measurements of spectral radiance from more than 100 directions has been developed. A large solar simulator for controlled experiments is described. RESULTS: In summer it is relatively easy to obtain sufficient vitamin D because sun exposure times are short. In winter solstice vitamin D3 cannot be obtained with realistic clothing even if the exposure were extended to all daylight hours. CONCLUSION: Improved and controlled experiments to determine vitamin D3 production are required to assess the positive effects of solar UV radiation and to assess its natural variability.


Assuntos
Colecalciferol/biossíntese , Humanos , Estações do Ano , Luz Solar , Fatores de Tempo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA