Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629116

RESUMO

Intestinal fibrosis is a common complication that affects more than 50% of Crohn´s Disease (CD) patients. There is no pharmacological treatment against this complication, with surgery being the only option. Due to the unknown role of P2X7 in intestinal fibrosis, we aim to analyze the relevance of this receptor in CD complications. Surgical resections from CD and non-Inflammatory Bowel Disease (IBD) patients were obtained. Intestinal fibrosis was induced with two different murine models: heterotopic transplant model and chronic-DSS colitis in wild-type and P2X7-/- mice. Human small intestine fibroblasts (HSIFs) were transfected with an siRNA against P2X7 and treated with TGF-ß. A gene and protein expression of P2X7 receptor was significantly increased in CD compared to non-IBD patients. The lack of P2X7 in mice provoked an enhanced collagen deposition and increased expression of several profibrotic markers in both murine models of intestinal fibrosis. Furthermore, P2X7-/- mice exhibited a higher expression of proinflammatory cytokines and a lower expression of M2 macrophage markers. Moreover, the transient silencing of the P2X7 receptor in HSIFs significantly induced the expression of Col1a1 and potentiated the expression of Col4 and Col5a1 after TGF-ß treatment. P2X7 regulates collagen expression in human intestinal fibroblasts, while the lack of this receptor aggravates intestinal fibrosis.


Assuntos
Fibroblastos , Intestinos , Receptores Purinérgicos P2X7 , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/patologia , Colágeno/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Fibroblastos/metabolismo , Intestinos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fator de Crescimento Transformador beta/farmacologia
2.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118845, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32910990

RESUMO

Mutations in DKC1, NOP10, and TINF2 genes, coding for proteins in telomerase and shelterin complexes, are responsible for diverse diseases known as telomeropathies and ribosomopathies, including dyskeratosis congenita (DC, ORPHA 1775). These genes contribute to the DC phenotype through mechanisms that are not completely understood. We previously demonstrated in models of DC that oxidative stress is an early and independent event that occurs prior to telomere shortening. To clarify the mechanisms that induce oxidative stress, we silenced genes DKC1, NOP10, and TINF2 with siRNA technology. With RNA array hybridisation, we found several altered pathways for each siRNA model. Afterwards, we identified common related genes. The silenced cell line with the most deregulated genes and pathways was siNOP10, followed by siDKC1, and then by siTINF2 to a lesser extent. The siDKC1 and siNOP10 models shared altered expression of genes in the p53 pathway, while siNOP10 and siTINF2 had the adherens junction pathway in common. We also observed that depletion of DKC1 and NOP10 H/ACA ribonucleoprotein produced ribosomal biogenesis impairment which, in turn, promoted p53 pathway activation. Finally, we found that those enzymes responsible for GSH synthesis were down-regulated in models of siDKC1 and siNOP10. In contrast, the silenced cells for TINF2 showed no disruption of ribosomal biogenesis or oxidative stress and did not produce p53 pathway activation. These results indicate that depletion of DKC1 and NOP10 promotes oxidative stress and disrupts ribosomal biogenesis which, in turn, activates the p53 pathway.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Estresse Oxidativo/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular , Mutação/genética , Nucleofosmina , RNA Interferente Pequeno , Ribossomos/genética , Complexo Shelterina , Telomerase/genética , Telômero/genética , Encurtamento do Telômero/genética , Proteínas de Ligação a Telômeros/genética
3.
Curr Pharm Des ; 24(40): 4755-4770, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30644344

RESUMO

BACKGROUND: Cell senescence constitutes a critical process to respond to a variety of insults and adverse circumstances. Senescence involves the detention of DNA replication and cell proliferation, and hence, genetic programs associated with DNA damage response, chromosome stability, chromatin rearrangement, epigenetic reprogramming, and cell cycle are tightly linked to the senescent phenotype. Although senescence increases with age, the real implication of senescence regulation in the progress of aging in humans is largely discussed. In this context, reactive oxygen species (ROS) accumulation has also been postulated to play a critical role in cell homeostasis, aging processes, and control of proliferation. METHODS: The previous years have produced a high increase in data that refine our understanding of the role of ROS, and their relationship with epigenetic events, in determining cellular fate. RESULTS: The accumulating evidence regarding the epigenetic regulation of ROS-mediated processes provides promising tools to deepen in our comprehension of the process of senescence, and to develop novel therapeutic strategies. In this review, we aim to provide an overview of the relationships between oxidative stress and cell senescence. CONCLUSION: We provide information about the role of epigenetic regulation in senescence and aging, collecting recent data from some examples of progeroid syndromes in which cell senescence, oxidative stress and epigenetic mechanisms are severely impaired. Finally, a collection of data is presented regarding current pharmacological approaches that either target or use oxidative stress-related factors or epigenetic regulators as strategies for disease treatment.


Assuntos
Senescência Celular/genética , Epigênese Genética/genética , Estresse Oxidativo/genética , Animais , Senescência Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Síndrome
4.
Aging (Albany NY) ; 6(3): 231-45, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24799429

RESUMO

Werner Syndrome (WS, ICD-10 E34.8, ORPHA902) and Atypical Werner Syndrome (AWS, ICD-10 E34.8, ORPHA79474) are very rare inherited syndromes characterized by premature aging. While approximately 90% of WS individuals have any of a range of mutations in theWRN gene, there exists a clinical subgroup in which the mutation occurs in the LMNA/C gene in heterozygosity. Although both syndromes exhibit an age-related pleiotropic phenotype, AWS manifests the onset of the disease during childhood, while major symptoms in WS appear between the ages of 20 and 30. To study the molecular mechanisms of progeroid diseases provides a useful insight into the normal aging process. Main changes found were the decrease in Cu/Zn and Mn SOD activities in the three cell lines. In AWS, both mRNA SOD and protein levels were also decreased. Catalase and glutathione peroxidases decrease, mainly in AWS. Glutaredoxin (Grx) and thioredoxin (Trx) protein expression was lower in the three progeroid cell lines. Grx and Trx were subjected to post-transcriptional regulation, because protein expression was reduced although mRNA levels were not greatly affected in WS. Low antioxidant defense and oxidative stress occur simultaneously in these rare genetic instability disorders at the onset of progeroid disease.


Assuntos
Estresse Oxidativo , Síndrome de Werner/metabolismo , Adolescente , Adulto , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Senilidade Prematura/patologia , Antioxidantes/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Criança , Exodesoxirribonucleases/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glutationa/metabolismo , Humanos , Lamina Tipo A/genética , Masculino , Mutação , Progéria/genética , Progéria/metabolismo , Progéria/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RecQ Helicases/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Síndrome de Werner/genética , Síndrome de Werner/patologia , Helicase da Síndrome de Werner
5.
Free Radic Biol Med ; 75 Suppl 1: S3, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26461333

RESUMO

Epigenetics is defined as the mitotically/meiotically heritable changes in gene expression that are not due to changes in the primary DNA sequence. Over recent years, growing evidence has suggested a link between redox metabolism and the control of epigenetic mechanisms. The effect of the redox control, oxidative stress, and glutathione (GSH) on the epigenetic mechanisms occur at different levels affecting DNA methylation, miRNAs expression, and histone post-translational modifications (PTMs). Furthermore, a number of redox PTMs are being described, so enriching the histone code. Pioneer works showed how oxidized GSH inhibits the activity of S-adenosyl methionine synthetase, MAT1A, a key enzyme involved in the synthesis of S-adenosyl methionine (SAM), which is used by DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs). Alteration in NAD /NADH ratio affects the activity of class III histone deacetylases (HDACs) and poly-ADP ribosyltransferases (PARPs). Furthermore, the iron redox state of the catalytic center of key enzymes influences the activity of HDACs and the activity of Tet methylcytosine dioxygenases (DNA demetylases) and JmjC histone demethylases. In this communication, we will show the intricate mechanisms that participate in the redox control of the epigenetic mechanisms. We specially focus our work in the characterization of new PTMs in histones, such as histone carbonylation and glutathionylation. Demonstrating how GSH influences the epigenetic mechanisms beyond a mere regulation of SAM levels. The mechanisms described in this communication place GSH and redox control in the landscape of the epigenetic regulation. The results shown underscore the relevant role that oxidative stress and GSH play as key factors in epigenetics, opening a new window for understating the underlying mechanisms that control cell differentiation, proliferation, development, and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA