Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(24): 16658-16679, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38060537

RESUMO

Histone deacetylases (HDACs) have emerged as powerful epigenetic modifiers of histone/non-histone proteins via catalyzing the deacetylation of ε-N-acetyl lysines. The dysregulated activity of these Zn2+-dependent hydrolases has been broadly implicated in disease, notably cancer. Clinically, the recurring dose-limiting toxicities of first-generation HDACi sparked a paradigm shift toward safer isoform-specific molecules. With pervasive roles in aggressive diseases, there remains a need for novel approaches to target these enzymes. Herein, we report the discovery of YSR734, a first-in-class covalent HDACi, with a 2-aminobenzanilide Zn2+ chelate and a pentafluorobenzenesulfonamide electrophile. This class I selective proof of concept modified HDAC2Cys274 (catalytic domain), with nM potency against HDAC1-3, sub-µM activity in MV4-11 cells, and limited cytotoxicity in MRC-9 fibroblasts. In C2C12 myoblasts, YSR734 activated muscle-specific biomarkers myogenin/Cav3, causing potent differentiation into myotubes (applications in Duchenne Muscular Dystrophy). Current efforts are focused on improving in vivo ADME toward a preclinical covalent HDACi.


Assuntos
Leucemia Mieloide Aguda , Distrofia Muscular de Duchenne , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Isoformas de Proteínas/metabolismo , Histona Desacetilases/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico
2.
Methods Mol Biol ; 2589: 157-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255624

RESUMO

The aberrant activity of histone deacetylases (HDACs) across a broad range of cancers and other disease indications has led to the development of small-molecule inhibitors that target one or more members of the HDAC protein family. Emerging HDAC inhibitors that show promise in drug discovery programs must be assessed across a range of in vitro assays to establish an inhibitor profile for potency and cellular selectivity towards target HDAC(s) as well as preliminary absorption, distribution, metabolism, and excretion (ADME) features. Here we provide an overview of methods to determine a subset of pivotal in vitro drug-like parameters for HDAC inhibitors (HDACi). We initially describe protocols for parallel artificial membrane permeability assays (PAMPA) to evaluate the passive permeability of small molecules across lipid membranes. Subsequently, we elaborate on cytotoxicity assays using CellTiter-Blue to determine HDACi-induced cell death in healthy/diseased cellular models. We next focus on assessing the target engagement of inhibitors with the appropriate HDAC isoforms in a cellular environment via Western blotting of acetylated HDAC substrates. Finally, we provide detailed guidelines on how to assess the metabolic stability of HDACi through whole blood stability assays. Collectively, these assays provide an overview of the permeability, selectivity, and stability of the HDAC inhibitor under development.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Isoformas de Proteínas/metabolismo , Membranas Artificiais , Lipídeos
3.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36355493

RESUMO

NK/T-cell lymphoma (NKTCL) and γδ T-cell non-Hodgkin lymphomas (γδ T-NHL) are highly aggressive lymphomas that lack rationally designed therapies and rely on repurposed chemotherapeutics from other hematological cancers. Histone deacetylases (HDACs) have been targeted in a range of malignancies, including T-cell lymphomas. This study represents exploratory findings of HDAC6 inhibition in NKTCL and γδ T-NHL through a second-generation inhibitor NN-429. With nanomolar in vitro HDAC6 potency and high in vitro and in cellulo selectivity for HDAC6, NN-429 also exhibited long residence time and improved pharmacokinetic properties in contrast to older generation inhibitors. Following unique selective cytotoxicity towards γδ T-NHL and NKTCL, NN-429 demonstrated a synergistic relationship with the clinical agent etoposide and potential synergies with doxorubicin, cytarabine, and SNS-032 in these disease models, opening an avenue for combination treatment strategies.

4.
EMBO Mol Med ; 14(12): e15200, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36341492

RESUMO

Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.


Assuntos
Linfoma Cutâneo de Células T , Quinases Ativadas por p21 , Animais , Camundongos , Genômica , Xenoenxertos , Linfoma Cutâneo de Células T/tratamento farmacológico
5.
ChemMedChem ; 17(18): e202100622, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35983937

RESUMO

Schistosomiasis is a prevalent yet neglected tropical parasitic disease caused by the Schistosoma genus of blood flukes. Praziquantel is the only currently available treatment, hence drug resistance poses a major threat. Recently, histone deacetylase 8 (HDAC8) selective inhibitors have been proposed as a viable treatment for schistosomiasis. Herein, we report the phenotypic screening of a focused library of small molecules of varying HDAC isozyme-inhibition profiles, including eight HDAC8 inhibitors with >10-fold selectivity in comparable functional inhibition assays and IC50 values against HDAC8<100 nM. HDAC8-selective inhibitors showed the lowest potency against Schistosoma mansoni newly transformed schistosomula (NTS). Pan-HDAC inhibitors MMH258, MMH259, and MMH373, as assessed by functional inhibition assays, with minimal or no-observed hHDAC8 and SmHDAC8 activities, were active against both NTS (MMH258, IC50 =1.5 µM; MMH259, IC50 =2.3 µM) and adult S. mansoni (MMH258, IC50 =2.1 µM; MMH373, IC50 =3.4 µM). Our results indicate that neither hHDAC8 nor SmHDAC8 activity were directly correlated to their NTS and adult S. mansoni activities.


Assuntos
Inibidores de Histona Desacetilases , Esquistossomose , Animais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases , Humanos , Isoenzimas , Praziquantel/uso terapêutico , Proteínas Repressoras , Schistosoma mansoni , Esquistossomose/tratamento farmacológico
6.
J Med Chem ; 65(4): 3193-3217, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35119267

RESUMO

Histone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor NN-390 is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, NN-390 is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance. MB stem cells contribute to these patients' poor clinical outcomes. NN-390 selectively targets this cell population with a 44.3-fold therapeutic margin between patient-derived Group 3 MB cells in comparison to healthy neural stem cells. NN-390 demonstrated a 45-fold increased potency over HDAC6-selective clinical candidate citarinostat. In summary, HDAC6-selective molecules demonstrated in vitro therapeutic potential against Group 3 MB.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Meduloblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Relação Estrutura-Atividade
7.
J Med Chem ; 64(12): 8486-8509, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34101461

RESUMO

Epigenetic targeting has emerged as an efficacious therapy for hematological cancers. The rare and incurable T-cell prolymphocytic leukemia (T-PLL) is known for its aggressive clinical course. Current epigenetic agents such as histone deacetylase (HDAC) inhibitors are increasingly used for targeted therapy. Through a structure-activity relationship (SAR) study, we developed an HDAC6 inhibitor KT-531, which exhibited higher potency in T-PLL compared to other hematological cancers. KT-531 displayed strong HDAC6 inhibitory potency and selectivity, on-target biological activity, and a safe therapeutic window in nontransformed cell lines. In primary T-PLL patient cells, where HDAC6 was found to be overexpressed, KT-531 exhibited strong biological responses, and safety in healthy donor samples. Notably, combination studies in T-PLL patient samples demonstrated KT-531 synergizes with approved cancer drugs, bendamustine, idasanutlin, and venetoclax. Our work suggests HDAC inhibition in T-PLL could afford sufficient therapeutic windows to achieve durable remission either as stand-alone or in combination with targeted drugs.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Leucemia Prolinfocítica de Células T/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Cloridrato de Bendamustina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacocinética , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirrolidinas/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , para-Aminobenzoatos/farmacologia
8.
J Med Chem ; 64(5): 2691-2704, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33576627

RESUMO

Histone deacetylase 6 (HDAC6) is involved in multiple regulatory processes, ranging from cellular stress to intracellular transport. Inhibition of aberrant HDAC6 activity in several cancers and neurological diseases has been shown to be efficacious in both preclinical and clinical studies. While selective HDAC6 targeting has been pursued as an alternative to pan-HDAC drugs, identifying truly selective molecular templates has not been trivial. Herein, we report a structure-activity relationship study yielding TO-317, which potently binds HDAC6 catalytic domain 2 (Ki = 0.7 nM) and inhibits the enzyme function (IC50 = 2 nM). TO-317 exhibits 158-fold selectivity for HDAC6 over other HDAC isozymes by binding the catalytic Zn2+ and, uniquely, making a never seen before direct hydrogen bond with the Zn2+ coordinating residue, His614. This novel structural motif targeting the second-sphere His614 interaction, observed in a 1.84 Å resolution crystal structure with drHDAC6 from zebrafish, can provide new pharmacophores for identifying enthalpically driven, high-affinity, HDAC6-selective inhibitors.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Sulfonamidas/farmacologia , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacocinética , Masculino , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
9.
Eur J Med Chem ; 201: 112411, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615502

RESUMO

Dysregulated Histone Deacetylase (HDAC) activity across multiple human pathologies have highlighted this family of epigenetic enzymes as critical druggable targets, amenable to small molecule intervention. While efficacious, current approaches using non-selective HDAC inhibitors (HDACi) have been shown to cause a range of undesirable clinical toxicities. To circumvent this, recent efforts have focused on the design of highly selective HDACi as a novel therapeutic strategy. Beyond roles in regulating transcription, the unique HDAC6 (with two catalytic domains) regulates the deacetylation of α-tubulin; promoting growth factor-controlled cell motility, cell division, and metastatic hallmarks. Recent studies have linked aberrant HDAC6 function in various hematological cancers including acute myeloid leukaemia and multiple myeloma. Herein, we report the discovery, in vitro characterization, and biological evaluation of PTG-0861 (JG-265), a novel HDAC6-selective inhibitor with strong isozyme-selectivity (∼36× ) and low nanomolar potency (IC50 = 5.92 nM) against HDAC6. This selectivity profile was rationalized via in silico docking studies and also observed in cellulo through cellular target engagement. Moreover, PTG-0861 achieved relevant potency against several blood cancer cell lines (e.g. MV4-11, MM1S), whilst showing limited cytotoxicity against non-malignant cells (e.g. NHF, HUVEC) and CD-1 mice. In examining compound stability and cellular permeability, PTG-0861 revealed a promising in vitro pharmacokinetic (PK) profile. Altogether, in this study we identified a novel and potent HDAC6-selective inhibitor (∼4× more selective than current clinical standards - citarinostat, ricolinostat), which achieves cellular target engagement, efficacy in hematological cancer cells with a promising safety profile and in vitro PK.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/metabolismo , Benzamidas/farmacocinética , Domínio Catalítico , Linhagem Celular Tumoral , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacocinética , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
10.
ACS Med Chem Lett ; 11(1): 56-64, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31938464

RESUMO

The HDAC inhibitor 4-tert-butyl-N-(4-(hydroxycarbamoyl)phenyl)benzamide (AES-350, 51) was identified as a promising preclinical candidate for the treatment of acute myeloid leukemia (AML), an aggressive malignancy with a meagre 24% 5-year survival rate. Through screening of low-molecular-weight analogues derived from the previously discovered novel HDAC inhibitor, AES-135, compound 51 demonstrated greater HDAC isoform selectivity, higher cytotoxicity in MV4-11 cells, an improved therapeutic window, and more efficient absorption through cellular and lipid membranes. Compound 51 also demonstrated improved oral bioavailability compared to SAHA in mouse models. A broad spectrum of experiments, including FACS, ELISA, and Western blotting, were performed to support our hypothesis that 51 dose-dependently triggers apoptosis in AML cells through HDAC inhibition.

11.
Anal Chem ; 91(8): 5371-5379, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30915836

RESUMO

The changing concentrations of circulating protein biomarkers have been correlated with a variety of diseases. Quantitative bioassays capable of sensitive and specific determination of protein biomarkers at low levels can be essential for therapeutic treatments that can improve outcomes for patients. Herein, we describe the investigation of a rotating paper device (RPD) for quantitative determination of targeted proteins at the fM concentration level. The RPD consists of two circular papers each separately supported with a plastic disc. Protein detection is conducted via enhanced immunoassay using amplification in a sequential workflow, which includes a sandwich immunoassay in the upper paper and a signal amplification reaction in the lower paper. The sandwich immunoassay is conducted using biobarcode nanoparticles (BNPs) and results in the release of reporter oligonucleotides from BNPs. These oligonucleotides are transferred to the bottom paper, where they engage in a target recycling methodology that leads to the production of a colorimetric signal. The assay was evaluated for quantitation of interleukin-6 (IL-6), a cytokine biomarker in serum. A limit of detection of 63 fM and a dynamic range of 200 fM-8 pM was observed for the assay. The specificity of the assay was successfully verified against several common protein biomarkers.


Assuntos
Imunoensaio , Interleucina-6/sangue , Papel , Biomarcadores/sangue , Humanos , Nanopartículas/química , Oligonucleotídeos/química , Tamanho da Partícula , Propriedades de Superfície
12.
Anal Chim Acta ; 1041: 1-24, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30340680

RESUMO

The development of bioanalytical methods that provide early detection of the presence of cancer by sensitive and specific determination of biomarkers such as small biomolecules, nucleic acids, proteins, enzymes, and even whole cells are essential to improve opportunity for improved patient treatment and to diminish the rate of cancer mortality. Förster resonance energy transfer (FRET) methods have been increasingly used to develop bioassays that offer speed, selectivity and low detection levels with practicality that is appropriate for providing point-of-care measurements for screening. The unique optical and photophysical properties of fluorescent nanoparticles such as semiconductor quantum dots (QDs), upconversion nanoparticles (UCNPs), graphene quantum dots (GQDs) and other materials have been reported to operate as efficient donors and/or acceptors for replacement of fluorescent organic dye molecules in various FRET-based assays. This review is focused on the recent progress that has been made in the development of nanoparticle-based FRET bioassays, and considers nanoparticle synthesis, design of optical properties, conjugation chemistry and approaches to fluorescence detection that provide for selective and sensitive quantification of cancer biomarkers.


Assuntos
Biomarcadores Tumorais/análise , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Nanopartículas/química , Neoplasias/diagnóstico , Carbono/química , Humanos , Metais/química , Ácidos Nucleicos/análise , Proteínas/análise
13.
Methods Mol Biol ; 1368: 133-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26614073

RESUMO

Here, we describe detection of single nucleotide polymorphism (SNP) in genomic DNA samples using a NanoBioArray (NBA) chip. Fast DNA hybridization is achieved in the chip when target DNAs are introduced to the surface-arrayed probes using centrifugal force. Gold nanoparticles (AuNPs) are used to assist SNP detection at room temperature. The parallel setting of sample introduction in the spiral channels of the NBA chip enables multiple analyses on many samples, resulting in a technique appropriate for high-throughput SNP detection. The experimental procedure, including chip fabrication, probe array printing, DNA amplification, hybridization, signal detection, and data analysis, is described in detail.


Assuntos
Centrifugação , Genes ras/genética , Dispositivos Lab-On-A-Chip , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Polimorfismo de Nucleotídeo Único , Aldeídos , Sondas de DNA/química , Sondas de DNA/genética , Dimetilpolisiloxanos/química , Ouro/química , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico , Hibridização de Ácido Nucleico , Espectrometria de Fluorescência , Propriedades de Superfície , Temperatura
14.
Anal Biochem ; 448: 58-64, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24291640

RESUMO

This study employs a nanobioarray (NBA) chip for multiple biodetection of single base pair mutations at the Kras gene codon 12. To distinguish between the mutant and wild-type target DNAs, current bioarray methods use high-temperature hybridization of the targets to the allele-specific probes. However, these techniques need prior temperature optimization and become harder to implement in the case of the detection of multiple mutations. We aimed to detect these mutations at a single temperature (room temperature), enabled by the use of gold nanoparticles (AuNPs) on the bioarray created within nanofluidic channels. In this method, a low amount of target oligonucleotides (5fmol) and polymerase chain reaction (PCR) products (300pg) were first loaded on the AuNP surface, and then these AuNP-bound targets were introduced into the channels of a polydimethylsiloxane (PDMS) glass chip. The targets hybridized to their complementary probes at the intersection of the target channels to the pre-printed oligonucleotide probe lines on the glass surface, creating a bioarray. Using this technique, fast and high-throughput multiple discrimination of the Kras gene codon 12 were achieved at room temperature using the NBA chip, and the specificity of the method was proved to be as high as that with the temperature stringency method.


Assuntos
DNA/análise , Técnicas Genéticas/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Alelos , Códon , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Temperatura , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA