Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell Rep ; 43(8): 114618, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39146181

RESUMO

Adar null mutant mouse embryos die with aberrant double-stranded RNA (dsRNA)-driven interferon induction, and Adar Mavs double mutants, in which interferon induction is prevented, die soon after birth. Protein kinase R (Pkr) is aberrantly activated in Adar Mavs mouse pup intestines before death, intestinal crypt cells die, and intestinal villi are lost. Adar Mavs Eifak2 (Pkr) triple mutant mice rescue all defects and have long-term survival. Adenosine deaminase acting on RNA 1 (ADAR1) and PKR co-immunoprecipitate from cells, suggesting PKR inhibition by direct interaction. AlphaFold studies on an inhibitory PKR dsRNA binding domain (dsRBD)-kinase domain interaction before dsRNA binding and on an inhibitory ADAR1 dsRBD3-PKR kinase domain interaction on dsRNA provide a testable model of the inhibition. Wild-type or editing-inactive human ADAR1 expressed in A549 cells inhibits activation of endogenous PKR. ADAR1 dsRNA binding is required for, but is not sufficient for, PKR inhibition. Mutating the ADAR1 dsRBD3-PKR contact prevents co-immunoprecipitation, ADAR1 inhibition of PKR activity, and co-localization of ADAR1 and PKR in cells.


Assuntos
Adenosina Desaminase , RNA de Cadeia Dupla , Proteínas de Ligação a RNA , eIF-2 Quinase , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , eIF-2 Quinase/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Animais , Camundongos , Ligação Proteica , Ativação Enzimática , Células A549 , Domínios Proteicos
2.
Nat Commun ; 15(1): 6914, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134548

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.


Assuntos
Ciclo-Oxigenase 1 , Complexo IV da Cadeia de Transporte de Elétrons , Inflamação , Fígado , Fosforilação Oxidativa , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Masculino , Camundongos , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo
3.
Sci Rep ; 14(1): 20160, 2024 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-39215103

RESUMO

Site-specific recombinases (SSRs) are critical for achieving precise spatiotemporal control of engineered alleles. These enzymes play a key role in facilitating the deletion or inversion of loci flanked by recombination sites, resulting in the activation or repression of endogenous genes, selection markers or reporter elements. However, multiple recombination in complex alleles can be laborious. To address this, a new and efficient method using AAV vectors has been developed to simplify the conversion of systems based on Cre, FLP, Dre and Vika recombinases. In this study, we present an effective method for ex vivo allele conversion using Cre, FLP (flippase), Dre, and Vika recombinases, employing adeno-associated viruses (AAV) as delivery vectors. AAVs enable efficient allele conversion with minimal toxicity in a reporter mouse line. Moreover, AAVs facilitate sequential allele conversion, essential for fully converting alleles with multiple recombination sites, typically found in conditional knockout mouse models. While simple allele conversions show a 100% efficiency rate, complex multiple conversions consistently achieve an 80% conversion rate. Overall, this strategy markedly reduces the need for animals and significantly speeds up the process of allele conversion, representing a significant improvement in genome engineering techniques.


Assuntos
Alelos , Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Vetores Genéticos/genética , Camundongos , Conversão Gênica , Blastocisto/metabolismo , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , Recombinação Genética
4.
EMBO Rep ; 25(8): 3456-3485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877170

RESUMO

T cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood. Here, we identify the adaptor protein ABIN1 as a component of the signaling complexes of GITR and OX40 co-stimulation receptors. T cells lacking ABIN1 are hyper-responsive ex vivo, exhibit enhanced responses to cognate infections, and superior ability to induce experimental autoimmune diabetes in mice. ABIN1 negatively regulates p38 kinase activation and late NF-κB target genes. P38 is at least partially responsible for the upregulation of the key effector proteins IFNG and GZMB in ABIN1-deficient T cells after TCR stimulation. Our findings reveal the intricate role of ABIN1 in T-cell regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Ativação Linfocitária/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores OX40/metabolismo , Receptores OX40/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
5.
Cells ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891052

RESUMO

Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.


Assuntos
Anemia de Diamond-Blackfan , Terapia Genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Terapia Genética/métodos , Humanos , Sistemas CRISPR-Cas/genética , Vetores Genéticos , Lentivirus/genética , Animais , Proteínas Ribossômicas/genética , Mutação/genética , Edição de Genes/métodos
6.
Commun Biol ; 7(1): 244, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424235

RESUMO

The formation of hematopoietic cells relies on the chromatin remodeling activities of ISWI ATPase SMARCA5 (SNF2H) and its complexes. The Smarca5 null and conditional alleles have been used to study its functions in embryonic and organ development in mice. These mouse model phenotypes vary from embryonic lethality of constitutive knockout to less severe phenotypes observed in tissue-specific Smarca5 deletions, e.g., in the hematopoietic system. Here we show that, in a gene dosage-dependent manner, the hypomorphic allele of SMARCA5 (S5tg) can rescue not only the developmental arrest in hematopoiesis in the hCD2iCre model but also the lethal phenotypes associated with constitutive Smarca5 deletion or Vav1iCre-driven conditional knockout in hematopoietic progenitor cells. Interestingly, the latter model also provided evidence for the role of SMARCA5 expression level in hematopoietic stem cells, as the Vav1iCre S5tg animals accumulate stem and progenitor cells. Furthermore, their hematopoietic stem cells exhibited impaired lymphoid lineage entry and differentiation. This observation contrasts with the myeloid lineage which is developing without significant disturbances. Our findings indicate that animals with low expression of SMARCA5 exhibit normal embryonic development with altered lymphoid entry within the hematopoietic stem cell compartment.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Diferenciação Celular/genética , Adenosina Trifosfatases/metabolismo
7.
Curr Protoc ; 4(2): e980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385868

RESUMO

The skeletal system mirrors several processes in the vertebrate body that impact developmental malfunctions, hormonal disbalance, malfunction of calcium metabolism and turn over, and inflammation processes such as arthrosis. X-ray micro computed tomography is a useful tool for 3D in situ evaluation of the skeletal system in a time-related manner, but results depend highly on resolution. Here, we provide the methodological background for a graduated evaluation from whole-body analysis of skeletal morphology and mineralization to high-resolution analysis of femoral and vertebral microstructure. We combine an expert-based evaluation with a machine-learning-based computational approach, including pre-setup analytical task lists. © 2024 Wiley Periodicals LLC. Basic Protocol 1: In vivo microCT scanning and skeletal analysis in mice Basic Protocol 2: Ex vivo high-resolution microCT scanning and microstructural analysis of the femur and L4 vertebra.


Assuntos
Calcinose , Animais , Camundongos , Microtomografia por Raio-X , Modelos Animais de Doenças , Fêmur/diagnóstico por imagem , Vértebras Lombares
8.
EMBO Mol Med ; 15(9): e17399, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37533404

RESUMO

Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V . Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.


Assuntos
Síndrome de Barth , Camundongos , Animais , Síndrome de Barth/metabolismo , Síndrome de Barth/patologia , Cardiolipinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Glicólise , Ácidos Graxos/metabolismo , Trifosfato de Adenosina
9.
Methods Mol Biol ; 2675: 297-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258772

RESUMO

Cancer cells depend on nucleotides for proliferation. Inhibition of nucleotide metabolism by antimetabolites is a well-established anticancer therapy. However, resistance and toxicity to antimetabolite treatments reduce their effectiveness. Here, we focus on the pyrimidine de novo synthesis pathway, which is crucial for cancer cell proliferation, yet its pharmacological targeting in cancer has been without much clinical success so far. Hence, it is important to understand how cancer cells cope with the insufficiency of this pathway. Here, we describe a procedure to prepare subcutaneous tumor model deficient in de novo pyrimidine synthesis. For examination of metabolic responses to de novo synthesis blockade in tumors, we propose application of MALDI imaging that allows spatially resolved examination of metabolic responses to de novo synthesis blockade in tumors.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Pirimidinas , Neoplasias/metabolismo , Nucleotídeos , Análise Espacial
10.
Cell Mol Life Sci ; 80(5): 135, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37119365

RESUMO

Several membrane-anchored signal mediators such as cytokines (e.g. TNFα) and growth factors are proteolytically shed from the cell surface by the metalloproteinase ADAM17, which, thus, has an essential role in inflammatory and developmental processes. The membrane proteins iRhom1 and iRhom2 are instrumental for the transport of ADAM17 to the cell surface and its regulation. However, the structure-function determinants of the iRhom-ADAM17 complex are poorly understood. We used AI-based modelling to gain insights into the structure-function relationship of this complex. We identified different regions in the iRhom homology domain (IRHD) that are differentially responsible for iRhom functions. We have supported the validity of the predicted structure-function determinants with several in vitro, ex vivo and in vivo approaches and demonstrated the regulatory role of the IRHD for iRhom-ADAM17 complex cohesion and forward trafficking. Overall, we provide mechanistic insights into the iRhom-ADAM17-mediated shedding event, which is at the centre of several important cytokine and growth factor pathways.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteína ADAM17/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Citocinas/metabolismo , Modelos Estruturais
11.
Apoptosis ; 28(1-2): 186-198, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36282364

RESUMO

BACKGROUND: LACTB was recently identified as a mitochondrial tumour suppressor that negatively affects cancer cell proliferation by inducing cell death and/or differentiation, depending on the cell type and tissue. However, the detailed mechanism underlying the LACTB-induced cancer cell death is largely unknown. METHODS: We used cell-based, either in 2D or 3D conditions, and in vivo experiments to understand the LACTB mechanisms. In this regard, protein array followed by an enrichment analysis, cell proliferation assays using different compounds, western blot analysis, flow cytometry and immunofluorescence were performed. Differences between quantitative variables following normal distribution were valuated using Student t test for paired or no-paired samples according to the experiment. For in vivo experiments differences in tumour growth were analyzed by 2-way ANOVA. RESULTS: We show, that LACTB expression leads to cell cycle arrest in G1 phase and increase of DNA oxidation that leads to activation of intrinsic caspase-independent cell death pathway. This is achieved by an increase of mitochondrial reactive oxygen species since early time points of LACTB induction. CONCLUSION: Our work provides a deeper mechanistic insight into LACTB-mediated cancer-cell death and shows the dynamics of the cellular responses a particular tumor suppressive stimulus might evoke under different genetic landscapes.


Assuntos
Neoplasias da Mama , Caspases , Humanos , Feminino , Caspases/genética , Caspases/metabolismo , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular , Espécies Reativas de Oxigênio/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética
12.
Cell Mol Life Sci ; 79(8): 423, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838828

RESUMO

In cancer, the activating transcription factor 2 (ATF2) has pleiotropic functions in cellular responses to growth stimuli, damage, or inflammation. Due to only limited studies, the significance of ATF2 in colorectal cancer (CRC) is not well understood. We report that low ATF2 levels correlated with worse prognosis and tumor aggressiveness in CRC patients. NanoString gene expression and ChIP analysis confirmed trophoblast cell surface antigen 2 (TROP2) as a novel inhibitory ATF2 target gene. This inverse correlation was further observed in primary human tumor tissues. Immunostainings revealed that high intratumoral heterogeneity for ATF2 and TROP2 expression was sustained also in liver metastasis. Mechanistically, our in vitro data of CRISPR/Cas9-generated ATF2 knockout (KO) clones revealed that high TROP2 levels were critical for cell de-adhesion and increased cell migration without triggering EMT. TROP2 was enriched in filopodia and displaced Paxillin from adherens junctions. In vivo imaging, micro-computer tomography, and immunostainings verified that an ATF2KO/TROP2high status triggered tumor invasiveness in in vivo mouse and chicken xenograft models. In silico analysis provided direct support that ATF2low/TROP2high expression status defined high-risk CRC patients. Finally, our data demonstrate that ATF2 acts as a tumor suppressor by inhibiting the cancer driver TROP2. Therapeutic TROP2 targeting might prevent particularly the first steps in metastasis, i.e., the de-adhesion and invasion of colon cancer cells.


Assuntos
Fator 2 Ativador da Transcrição , Antígenos de Neoplasias , Neoplasias Colorretais , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral/metabolismo , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Camundongos , Regulação para Cima
13.
Biomacromolecules ; 23(6): 2522-2535, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35584053

RESUMO

The derivative of protease inhibitor ritonavir (5-methyl-4-oxohexanoic acid ritonavir ester; RD) was recently recognized as a potent P-gp inhibitor and cancerostatic drug inhibiting the proteasome and STAT3 signaling. Therefore, we designed high-molecular-weight HPMA copolymer conjugates with a PAMAM dendrimer core bearing both doxorubicin (Dox) and RD (Star-RD + Dox) to increase the circulation half-life to maximize simultaneous delivery of Dox and RD into the tumor. Star-RD inhibited P-gp activity, potently sensitizing both low- and high-P-gp-expressing cancer cells to the cytostatic and proapoptotic activity of Dox in vitro. Star-RD + Dox possessed higher cytostatic and proapoptotic activities compared to Star-Dox and the equivalent mixture of Star-Dox and Star-RD in vitro. Star-RD + Dox efficiently inhibited STAT3 signaling and induced caspase-3 activation and DNA fragmentation in cancer cells in vivo. Importantly, Star-RD + Dox was found to have superior antitumor activity in terms of tumor growth inhibition and increased survival of mice bearing P-gp-expressing tumors.


Assuntos
Citostáticos , Neoplasias , Animais , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Camundongos , Nanomedicina , Polímeros , Inibidores de Proteases/farmacologia , Ritonavir
14.
Nat Commun ; 13(1): 1866, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387987

RESUMO

Type 2 diabetes mellitus represents a major health problem with increasing prevalence worldwide. Limited efficacy of current therapies has prompted a search for novel therapeutic options. Here we show that treatment of pre-diabetic mice with mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, improves glucose tolerance and reduces body weight with most pronounced reduction of visceral adipose tissue due to reduced food intake, suppressed adipogenesis and elimination of senescent cells. Glucose-lowering effect of mitochondrially targeted tamoxifen is linked to improvement of type 2 diabetes mellitus-related hormones profile and is accompanied by reduced lipid accumulation in liver. Lower senescent cell burden in various tissues, as well as its inhibitory effect on pre-adipocyte differentiation, results in lower level of circulating inflammatory mediators that typically enhance metabolic dysfunction. Targeting senescence with mitochodrially targeted tamoxifen thus represents an approach to the treatment of type 2 diabetes mellitus and its related comorbidities, promising a complex impact on senescence-related pathologies in aging population of patients with type 2 diabetes mellitus with potential translation into the clinic.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Idoso , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Humanos , Camundongos , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
15.
EBioMedicine ; 76: 103818, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35078012

RESUMO

BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Deriva e Deslocamento Antigênicos , Antineoplásicos Imunológicos/uso terapêutico , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/patologia , Camundongos , Mutação , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
16.
Cells ; 11(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053339

RESUMO

The mechanisms by which myelodysplastic syndrome (MDS) cells resist the effects of hypomethylating agents (HMA) are currently the subject of intensive research. A better understanding of mechanisms by which the MDS cell becomes to tolerate HMA and progresses to acute myeloid leukemia (AML) requires the development of new cellular models. From MDS/AML cell lines we developed a model of 5-azacytidine (AZA) resistance whose stability was validated by a transplantation approach into immunocompromised mice. When investigating mRNA expression and DNA variants of the AZA resistant phenotype we observed deregulation of several cancer-related pathways including the phosphatidylinosito-3 kinase signaling. We have further shown that these pathways can be modulated by specific inhibitors that, while blocking the proliferation of AZA resistant cells, are unable to increase their sensitivity to AZA. Our data reveal a set of molecular mechanisms that can be targeted to expand therapeutic options during progression on AZA therapy.


Assuntos
Azacitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Modelos Biológicos , Animais , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos , Camundongos SCID , Anotação de Sequência Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
17.
Genes (Basel) ; 12(7)2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-34356103

RESUMO

Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/- on male rats vs. their wild-type Nme7+/+ controls. Nme7+/- animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/- male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity.


Assuntos
Intolerância à Glucose/genética , Núcleosídeo-Difosfato Quinase/genética , Adiposidade/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/genética , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Fígado/metabolismo , Masculino , Núcleosídeo-Difosfato Quinase/metabolismo , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Transcriptoma
18.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065512

RESUMO

Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an "ancient" RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.


Assuntos
Antígenos de Neoplasias/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Células T Matadoras Naturais/metabolismo , RNA Helicases/metabolismo , Espermatogênese/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ativação Linfocitária/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
19.
Eur J Immunol ; 51(9): 2237-2250, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107067

RESUMO

Early embryonic hematopoiesis in mammals is defined by three successive waves of hematopoietic progenitors which exhibit a distinct hematopoietic potential and provide continuous support for the development of the embryo and adult organism. Although the functional importance of each of these waves has been analyzed, their spatio-temporal overlap and the lack of wave-specific markers hinders the accurate separation and assessment of their functional roles during early embryogenesis. We have recently shown that TLR2, in combination with c-kit, represents the earliest signature of emerging precursors of the second hematopoietic wave, erythro-myeloid precursors (EMPs). Since the onset of Tlr2 expression distinguishes EMPs from primitive progenitors which coexist in the yolk sac from E7.5, we generated a novel transgenic "knock in" mouse model, Tlr2Dtr , suitable for inducible targeted depletion of TLR2+ EMPs. In this model, the red fluorescent protein and diphtheria toxin receptor sequences are linked via a P2A sequence and inserted into the Tlr2 locus before its stop codon. We show that a timely controlled deletion of TLR2+ EMPs in Tlr2Dtr embryos results in a marked decrease in both erythroid as well as myeloid lineages and, consequently, in embryonic lethality peaking before E13.5. These findings validate the importance of EMPs in embryonic development.


Assuntos
Embrião de Mamíferos/patologia , Desenvolvimento Embrionário/genética , Hematopoese/genética , Células Progenitoras Mieloides/citologia , Receptor 2 Toll-Like/genética , Animais , Embrião de Mamíferos/embriologia , Eritrócitos/citologia , Hematopoese/fisiologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
Sci Rep ; 11(1): 11414, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075077

RESUMO

ADAM10 and ADAM17 are proteases that affect multiple signalling pathways by releasing molecules from the cell surface. As their substrate specificities partially overlaps, we investigated their concurrent role in liver regeneration and fibrosis, using three liver-specific deficient mouse lines: ADAM10- and ADAM17-deficient lines, and a line deficient for both proteases. In the model of partial hepatectomy, double deficient mice exhibited decreased AKT phosphorylation, decreased release of EGFR activating factors and lower shedding of HGF receptor c-Met. Thus, simultaneous ablation of ADAM10 and ADAM17 resulted in inhibited EGFR signalling, while HGF/c-Met signalling pathway was enhanced. In contrast, antagonistic effects of ADAM10 and ADAM17 were observed in the model of chronic CCl4 intoxication. While ADAM10-deficient mice develop more severe fibrosis manifested by high ALT, AST, ALP and higher collagen deposition, combined deficiency of ADAM10 and ADAM17 surprisingly results in comparable degree of liver damage as in control littermates. Therefore, ADAM17 deficiency is not protective in fibrosis development per se, but can ameliorate the damaging effect of ADAM10 deficiency on liver fibrosis development. Furthermore, we show that while ablation of ADAM17 resulted in decreased shedding of TNF RI, ADAM10 deficiency leads to increased levels of soluble TNF RI in serum. In conclusion, hepatocyte-derived ADAM10 and ADAM17 are important regulators of growth receptor signalling and TNF RI release, and pathological roles of these proteases are dependent on the cellular context.


Assuntos
Proteína ADAM10/fisiologia , Proteína ADAM17/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Hepatopatias , Regeneração Hepática , Fígado , Proteínas de Membrana/fisiologia , Animais , Células Cultivadas , Fibrose/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA