Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(9): 2755-2783, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39296273

RESUMO

6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.

2.
J Steroid Biochem Mol Biol ; 239: 106464, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38246201

RESUMO

Endogenous neurosteroids (NS) and their synthetic analogs, neuroactive steroids (NAS), are potentially useful drug-like compounds affecting the pathophysiology of miscellaneous central nervous system disorders (e.g. Alzheimer´s disease, epilepsy, depression, etc.). Additionally, NS have been shown to promote neuron viability and neurite outgrowth upon injury. The molecular, structural and physicochemical basis of the NS effect on neurons is so far not fully understood, and the development of new, biologically relevant assays is essential for their comparative analysis and for assessment of their mechanism of action. Here, we report the development of a novel, plate-based, high-content in vitro assay for screening of NS and newly synthesized, 5ß-reduced NAS for the promotion of postnatal neuron survival and neurite growth using fluorescent, postnatal mixed cortical neuron cultures isolated from thy1-YFP transgenic mice. The screen allows a detailed time course analysis of different parameters, such as the number of neurons or neurite lengths of 7-day, in vitro neuron cultures. Using the screen, we identify a new NAS, compound 42, that promotes the survival and growth of postnatal neurons significantly better than several endogenous NS (dehydroepiandrosterone, progesterone, and allopregnanolone). Interestingly, we demonstrate that compound 42 also promotes the proliferation of glia (in particular oligodendrocytes) and that the glial function is critical for its neuron growth support. Computational analysis of the biological data and calculated physicochemical properties of tested NS and NAS demonstrated that their biological activity is proportional to their lipophilicity. Together, the screen proves useful for the selection of neuron-active NAS and the comparative evaluation of their biologically relevant structural and physicochemical features.


Assuntos
Neuroesteroides , Camundongos , Animais , Neurônios , Neuritos , Progesterona/farmacologia , Oligodendroglia , Camundongos Transgênicos
3.
Environ Sci Technol ; 57(47): 18680-18689, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926844

RESUMO

Low-cost stainless-steel electrodes can activate hydrogen peroxide (H2O2) by converting it into a hydroxyl radical (•OH) and other reactive oxidants. At an applied potential of +0.020 V, the stainless-steel electrode produced •OH with a yield that was over an order of magnitude higher than that reported for other systems that employ iron oxides as catalysts under circumneutral pH conditions. Decreasing the applied potential at pH 8 and 9 enhanced the rate of H2O2 loss by shifting the process to a reaction mechanism that resulted in the formation of an Fe(IV) species. Significant metal leaching was only observed under acidic pH conditions (i.e., at pH <6), with the release of dissolved Fe and Cr occurring as the thickness of the passivation layer decreased. Despite the relatively high yield of •OH production under circumneutral pH conditions, most of the oxidants were scavenged by the electrode surface when contaminant concentrations comparable to those expected in drinking water sources were tested. The stainless-steel electrode efficiently removed trace organic contaminants from an authentic surface water sample without contaminating the water with Fe and Cr. With further development, stainless-steel electrodes could provide a cost-effective alternative to other H2O2 activation processes, such as those by ultraviolet light.


Assuntos
Oxidantes , Poluentes Químicos da Água , Peróxido de Hidrogênio , Aço Inoxidável , Oxirredução , Eletrodos , Água
4.
Metabolites ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36557247

RESUMO

Cytotoxicity of de novo purine synthesis (DNPS) metabolites is critical to the pathogenesis of three known and one putative autosomal recessive disorder affecting DNPS. These rare disorders are caused by biallelic mutations in the DNPS genes phosphoribosylformylglycineamidine synthase (PFAS), phosphoribosylaminoimidazolecarboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS), adenylosuccinate lyase (ADSL), and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) and are clinically characterized by developmental abnormalities, psychomotor retardation, and nonspecific neurological impairment. At a biochemical level, loss of function of specific mutated enzymes results in elevated levels of DNPS ribosides in body fluids. The main pathogenic effect is attributed to the accumulation of DNPS ribosides, which are postulated to be toxic to the organism. Therefore, we decided to characterize the uptake and flux of several DNPS metabolites in HeLa cells and the impact of DNPS metabolites to viability of cancer cell lines and primary skin fibroblasts. We treated cells with DNPS metabolites and followed their flux in purine synthesis and degradation. In this study, we show for the first time the transport of formylglycinamide ribotide (FGAR), aminoimidazole ribotide (AIR), succinylaminoimidazolecarboxamide ribotide (SAICAR), and aminoimidazolecarboxamide ribotide (AICAR) into cells and their flux in DNPS and the degradation pathway. We found diminished cell viability mostly in the presence of FGAR and AIR. Our results suggest that direct cellular toxicity of DNPS metabolites may not be the primary pathogenetic mechanism in these disorders.

5.
Proc Natl Acad Sci U S A ; 119(48): e2215541119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409882

RESUMO

Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.


Assuntos
Hormônios Juvenis , Metoprene , Animais , Feminino , Hormônios Juvenis/metabolismo , Ligantes , Metoprene/metabolismo , Insetos/metabolismo , Reprodução , Larva , Peptídeos/farmacologia
6.
Aging (Albany NY) ; 14(16): 6381-6414, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35951353

RESUMO

Accumulation of senescent cells in tissues with advancing age participates in the pathogenesis of several human age-associated diseases. Specific senescent secretome, the resistance of senescent cells to apoptotic stimuli, and lack of immune system response contribute to the accumulation of senescent cells and their adverse effects in tissues. Inhibition of antiapoptotic machinery, augmented in senescent cells, by BCL-2 protein family inhibitors represents a promising approach to eliminate senescent cells from tissues. This study aimed to explore synergistic and selective senolytic effects of anti-apoptotic BCL-2 family targeting compounds, particularly BH3 mimetics. Using human non-transformed cells RPE-1, BJ, and MRC-5 brought to ionizing radiation-, oncogene-, drug-induced and replicative senescence, we found synergy in combining MCL-1 selective inhibitors with other BH3 mimetics. In an attempt to uncover the mechanism of such synergy, we revealed that the surviving subpopulation of cells resistant to individually applied ABT-737/ABT-263, MIK665, ABT-199, and S63845 BCL-2 family inhibitors showed elevated MCL-1 compared to untreated control cells indicating the presence of a subset of cells expressing high MCL-1 levels and, therefore, resistant to BCL-2 inhibitors within the original population of senescent cells. Overall, we found that combining BCL-2 inhibitors can be beneficial for eliminating senescent cells, thereby enabling use of lower, potentially less toxic, doses of drugs compared to monotherapy, thereby overcoming the resistance of the subpopulation of senescent cells to monotherapy.


Assuntos
Senescência Celular , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
7.
Chembiochem ; 23(1): e202100489, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34821450

RESUMO

Scytophycins, including tolytoxin, represent a class of actin disrupting macrolides with strong antiproliferative effects on human cells. Despite intense research, little attention has been paid to scytophycin-induced cell death or the structural features affecting its potency. We show that tolytoxin and its natural analogue, 7-O-methylscytophycin B, lacking the hydroxyl substitution in its macrolactone ring, differ substantially in their cytotoxic effect. Both compounds increase the level of caspases 3/7, which are the main executioner proteases during apoptosis, in HeLa wild-type (WT) cells. However, no caspase activity was detected in HeLa cells lacking Bax/Bak proteins crucial for caspase activation via the mitochondrial pathway. Obtained data strongly suggests that scytophycins are capable of inducing mitochondria-dependent apoptosis. These findings encourage further research in structure-activity relationships in scytophycins and highlight the potential of these compounds in targeted drug delivery.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Hidróxidos/farmacologia , Macrolídeos/farmacologia , Piranos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidróxidos/química , Macrolídeos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Piranos/química
8.
J Med Chem ; 64(13): 9330-9353, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181409

RESUMO

Selective agonism of the estrogen receptor (ER) subtypes, ERα and ERß, has historically been difficult to achieve due to the high degree of ligand-binding domain structural similarity. Multiple efforts have focused on the use of classical organic scaffolds to model 17ß-estradiol geometry in the design of ERß selective agonists, with several proceeding to various stages of clinical development. Carborane scaffolds offer many unique advantages including the potential for novel ligand/receptor interactions but remain relatively unexplored. We synthesized a series of para-carborane estrogen receptor agonists revealing an ERß selective structure-activity relationship. We report ERß agonists with low nanomolar potency, greater than 200-fold selectivity for ERß over ERα, limited off-target activity against other nuclear receptors, and only sparse CYP450 inhibition at very high micromolar concentrations. The pharmacological properties of our para-carborane ERß selective agonists measure favorably against clinically developed ERß agonists and support further evaluation of carborane-based selective estrogen receptor modulators.


Assuntos
Compostos de Boro/farmacologia , Receptor beta de Estrogênio/agonistas , Estrogênios/farmacologia , Compostos de Boro/síntese química , Compostos de Boro/química , Relação Dose-Resposta a Droga , Estrogênios/síntese química , Estrogênios/química , Células HEK293 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
9.
J Mater Chem B ; 7(36): 5465-5477, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31414695

RESUMO

Photodynamic therapy has become a feasible direction for the treatment of both malignant and non-malignant diseases. It has been in the spotlight since FDA regulatory approval was granted to several photosensitizers worldwide. Nevertheless, there are still strong limitations in the targeting specificity that is vital to prevent systemic toxicity. Here, we report the synthesis and biological evaluation of a novel bimodal oxime conjugate composed of a photosensitizing drug, red-emitting pheophorbide a, and nandrolone (NT), a steroid specifically binding the androgen receptor (AR) commonly overexpressed in various tumors. We characterized the physico-chemical properties of the NT-pheophorbide a conjugate (NT-Pba) and singlet oxygen generation. Because light-triggered therapies have the potential to provide important advances in the treatment of hormone-sensitive cancer, the biological potential of this novel specifically-targeted photosensitizer was assessed in prostatic cancer cell lines in vitro using an AR-positive (LNCaP) and an AR-negative/positive cell line (PC-3). U-2 OS cells, both with and without stable AR expression, were used as a second cell line model. Interestingly, we found that the NT-Pba conjugate was not only photodynamically active and AR-specific, but also that its phototoxic effect was more pronounced compared to pristine pheophorbide a. We also examined the intracellular localization of NT-Pba. Live-cell fluorescence microscopy provided clear evidence that the NT-Pba conjugate localized in the endoplasmic reticulum and mitochondria. Moreover, we performed a competitive localization study with the excess of nonfluorescent NT, which was able to displace fluorescent NT-Pba from the cell interior, thereby further confirming the binding specificity. The oxime ether bond degradation was assayed in living cells by both real-time microscopy and a steroid receptor reporter assay using AR U-2 OS cells. Thus, NT-Pba is a promising candidate for both the selective targeting and eradication of AR-positive malignant cells by photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Clorofila/análogos & derivados , Oximas/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Testosterona/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clorofila/química , Clorofila/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Imagem Óptica , Oximas/química , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Relação Estrutura-Atividade , Propriedades de Superfície , Testosterona/análogos & derivados , Testosterona/química
10.
J Steroid Biochem Mol Biol ; 183: 68-79, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29803726

RESUMO

Microtubule dynamics is one of the major targets for new chemotherapeutic agents. This communication presents the synthesis and biological profiling of steroidal dimers based on estradiol, testosterone and pregnenolone bridged by 2,6-bis(azidomethyl)pyridine between D rings. The biological profiling revealed unique properties of the estradiol dimer including cytotoxic activities on a panel of 11 human cell lines, ability to arrest in the G2/M phase of the cell cycle accompanied with the attenuation of DNA/RNA synthesis. Thorough investigation precluded a genomic mechanism of action and revealed that the estradiol dimer acts at the cytoskeletal level by inhibiting tubulin polymerization. Further studies showed that estradiol dimer, but none of the other structurally related dimeric steroids, inhibited assembly of purified tubulin (IC50, 3.6 µM). The estradiol dimer was more potent than 2-methoxyestradiol, an endogenous metabolite of 17ß-estradiol and well-studied microtubule polymerization inhibitor with antitumor effects that was evaluated in clinical trials. Further, it was equipotent to nocodazole (IC50, 1.5 µM), an antimitotic small molecule of natural origin. Both estradiol dimer and nocodazole completely and reversibly depolymerized microtubules in interphase U2OS cells at 2.5 µM concentration. At lower concentrations (50 nM), estradiol dimer decreased the microtubule dynamics and growth life-time and produced comparable effect to nocodazole on the microtubule dynamicity. In silico modeling predicted that estradiol dimer binds to the colchicine-binding site in the tubulin dimer. Finally, dimerization of the steroids abolished their ability to induce transactivation by estrogen receptor α and androgen receptors. Although other steroids were reported to interact with microtubules, the estradiol dimer represents a new structural type of steroid inhibitor of tubulin polymerization and microtubule dynamics, bearing antimitotic and cytotoxic activity in cancer cell lines.


Assuntos
Estradiol/química , Estradiol/farmacologia , Microtúbulos/fisiologia , Neoplasias/patologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/química , Ciclo Celular , Proliferação de Células , Estrogênios/química , Estrogênios/farmacologia , Humanos , Microtúbulos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Polimerização , Tubulina (Proteína)/efeitos dos fármacos , Moduladores de Tubulina/química , Células Tumorais Cultivadas
11.
Proc Natl Acad Sci U S A ; 115(10): 2311-2316, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463747

RESUMO

Water treatment systems frequently use strong oxidants or UV light to degrade chemicals that pose human health risks. Unfortunately, these treatments can result in the unintended transformation of organic contaminants into toxic products. We report an unexpected reaction through which exposure of phenolic compounds to hydroxyl radicals (•OH) or UV light results in the formation of toxic α,ß-unsaturated enedials and oxoenals. We show that these transformation products damage proteins by reacting with lysine and cysteine moieties. We demonstrate that phenolic compounds react with •OH produced by the increasingly popular UV/hydrogen peroxide (H2O2) water treatment process or UV light to form toxic enedials and oxoenals. In addition to raising concerns about potential health risks of oxidative water treatment, our findings suggest the potential for formation of these toxic compounds in sunlit surface waters, atmospheric water, and living cells. For the latter, our findings may be particularly relevant to efforts to understand cellular damage caused by in vivo production of reactive oxygen species. In particular, we demonstrate that exposure of the amino acid tyrosine to •OH yields an electrophilic enedial product that undergoes cross-linking reaction with both lysine and cysteine residues.


Assuntos
Aldeídos/química , Radical Hidroxila/química , Oxirredução , Fenóis , Raios Ultravioleta , Purificação da Água , Aldeídos/metabolismo , Animais , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Fenóis/química , Fenóis/efeitos da radiação , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Tirosina/química , Tirosina/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
12.
J Steroid Biochem Mol Biol ; 178: 263-271, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29307714

RESUMO

We report the synthesis and detailed biological study of the synthetic brassinosteroid analog 2α,3α-dihydroxy-6-oxo-5α-androstan-17ß-yl N-(tert-butoxycarbonyl)-D,L-valinate (BR4848). The panel of cancer cell lines was used for characterization of its antiproliferative activity, yet had no adverse effects in normal human fibroblasts. In HeLa cells, BR4848-induced apoptosis was accompanied by increase of apoptotic subG1 cells, PARP-1 and caspase-7 fragmentation, downregulation of Bcl-2 and Mcl-1, an increase in caspase activity and G2/M phase cell cycle arrest. Antiproliferative properties of BR4848 were exhibited by inhibition of phosphorylation of Akt, Erk1/2 and FAK. Furthermore, the developed analog exhibited in vitro antiangiogenic activity in human umbilical vein endothelial cells (HUVECs). BR4848-induced apoptosis accompanied with G2/M arrest was detected in endothelial cells. BR4848 also inhibited adhesion, tube formation and migration of endothelial cells by inhibition of FAK, Erk 1/2, CDK5, VEGFR2, TNFα-stimulated production of IL-6, angiopoietin-2 and Jagged1. Finally, BR4848 did not modulate the activity nor nuclear translocation of any of the steroid receptors (ERα, ERß, AR, MR and PR) included in reporter cell-based assays, which excludes the genomic activity of steroid receptors as a contributing factor to the observed biological activities of BR4848.


Assuntos
Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Brassinosteroides/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , Neoplasias/patologia , Neovascularização Patológica/prevenção & controle , Inibidores da Angiogênese/química , Brassinosteroides/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Técnicas In Vitro , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/patologia , Fosforilação , Transdução de Sinais , Células Tumorais Cultivadas
13.
J Med Chem ; 60(14): 6098-6118, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28654257

RESUMO

The increase in the number of bacterial strains resistant to known antibiotics is alarming. In this study we report the synthesis of novel compounds termed Lipophosphonoxins II (LPPO II). We show that LPPO II display excellent activities against Gram-positive and -negative bacteria, including pathogens and multiresistant strains. We describe their mechanism of action-plasmatic membrane pore-forming activity selective for bacteria. Importantly, LPPO II neither damage nor cross the eukaryotic plasmatic membrane at their bactericidal concentrations. Further, we demonstrate LPPO II have low propensity for resistance development, likely due to their rapid membrane-targeting mode of action. Finally, we reveal that LPPO II are not toxic to either eukaryotic cells or model animals when administered orally or topically. Collectively, these results suggest that LPPO II are highly promising compounds for development into pharmaceuticals.


Assuntos
Antibacterianos/química , Uridina Monofosfato/análogos & derivados , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Masculino , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Fosfolipídeos/química , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Coelhos , Testes de Irritação da Pele , Estereoisomerismo , Relação Estrutura-Atividade , Uridina Monofosfato/síntese química , Uridina Monofosfato/química , Uridina Monofosfato/farmacologia
14.
Steroids ; 117: 97-104, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543674

RESUMO

Sesquiterpene lactone trilobolide is a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor, thus depleting the Ins(1,4,5)P3-sensitive intracellular calcium stores. Here, we describe a synthesis of a series of 6 trilobolide-steroids conjugates (estradiol, pregnene, dehydroepiandrosterone, and testosterone). We found that the newly synthesized Tb-based compounds possess different remarkable biological activities. Cancer cell cytotoxicity and preferential selectivity is represented in our study by a Tb-pregnene derivative. The most cytotoxic clickates of estradiol and pregnene were studied by FACS where impact on cell cycle and RNA synthesis was observed; live-cell microscopy revealed the impact on cell organelle morphology particularly endoplasmic reticulum, mitochondria and nucleus. Further, we have studied the estrogenic and androgenic properties of the clickate molecules using cell-based luciferase assays. Finally, antimycobacterial tests revealed that testosterone and estradiol derivatives potentiated the antimycobacterial activity up to IC50 of 10.6µM.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Butiratos/química , Furanos/química , Esteroides/química , Células A549 , Animais , Antibacterianos/síntese química , Candida/efeitos dos fármacos , Linhagem Celular Tumoral , Química Click , Células HCT116 , Humanos , Estrutura Molecular , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Esteroides/metabolismo
15.
J Steroid Biochem Mol Biol ; 159: 154-69, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26976651

RESUMO

Structure-activity relationship analysis and profiling of a library of AB-functionalized cholestane derivatives closely related to brassinosteroids (BRs) were performed to examine their antiproliferative activities and activities on steroid hormone receptors. Some of the compounds were found to have strong cytotoxic activity in several human normal and cancer cell lines. The presence of a 3-hydroxy or 3-oxo group and 2,3-vicinal diol or 3,4-vicinal diol moiety were found to be necessary for optimum biological activity, as well as a six-membered B ring. According to the profiling of all steroid receptors in both agonist and antagonist mode, the majority of the cholestanes were weakly active or inactive compared to the natural ligands. Estrogenic activity was detected for two compounds, two compounds possessed antagonistic properties on estrogen receptors and seven compounds showed agonistic activity. Two active cholestane derivatives were shown to strongly influence cell viability, proliferation, cell cycle distribution, apoptosis and molecular pathways responsible for these processes in hormone-sensitive/insensitive (MCF7/MDA-MB-468) breast cancer cell lines.


Assuntos
Antineoplásicos/farmacologia , Colestanos/farmacologia , Receptores de Esteroides/metabolismo , Antineoplásicos/química , Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Colestanos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade
16.
Environ Sci Technol ; 50(2): 890-8, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26687229

RESUMO

Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,ß-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.


Assuntos
Benzeno/química , Compostos Férricos/química , Compostos de Manganês/química , Óxidos/química , Sulfatos/química , Poluentes Químicos da Água/química , Água Subterrânea/química , Radical Hidroxila , Minerais/química , Oxidantes/química , Oxirredução , Fenóis/química
17.
Environ Sci Technol ; 47(19): 10781-90, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23470043

RESUMO

Open-water cells in unit process treatment wetlands can be used to exploit sunlight photolysis to remove trace organic contaminants from municipal wastewater effluent. To assess the performance of these novel systems, a photochemical model was calibrated using measured photolysis rates for atenolol, carbamazepine, propranolol, and sulfamethoxazole in wetland water under representative conditions. Contaminant transformation by hydroxyl radical ((•)OH) and carbonate radical ((•)CO3(-)) were predicted from steady-state radical concentrations measured at pH values between 8 and 10. Direct photolysis rates and the effects of light screening by dissolved organic matter on photolysis rates were estimated using solar irradiance data, contaminant quantum yields, and light screening factors. The model was applied to predict the land area required for 90% removal of a suite of wastewater-derived organic contaminants by sunlight-induced reactions under a variety of conditions. Results suggest that during summer, open-water cells that receive a million gallons of water per day (i.e., about 4.4 × 10(-2) m(3) s(-1)) of nitrified wastewater effluent can achieve 90% removal of most compounds in an area of about 15 ha. Transformation rates were strongly affected by pH, with some compounds exhibiting faster transformation rates under the high pH conditions associated with photosynthetic algae at the sediment-water interface and other contaminants exhibiting faster transformation rates at the circumneutral pH values characteristic of algae-free cells. Lower dissolved organic carbon concentrations typically resulted in increased transformation rates.


Assuntos
Modelos Químicos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/efeitos da radiação , Áreas Alagadas , Atenolol/efeitos da radiação , Carbamazepina/efeitos da radiação , Carbonatos/química , Cimetidina/efeitos da radiação , Dimetilnitrosamina/efeitos da radiação , Diurona/efeitos da radiação , Estradiol/efeitos da radiação , Radical Hidroxila/química , Fotólise , Propranolol/efeitos da radiação , Sulfametoxazol/efeitos da radiação , Luz Solar , Águas Residuárias
18.
Chemosphere ; 92(6): 652-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23433935

RESUMO

The decomposition of hydrogen peroxide catalyzed by iron and copper leads to the generation of reactive oxidants capable of oxidizing various organic compounds. However, the specific nature of the reactive oxidants is still unclear, with evidence suggesting the production of hydroxyl radical or high-valent metal species. To identify the reactive species in the Fenton system, the oxidation of a series of different compounds (phenol, benzoic acid, methanol, Reactive Black 5 and arsenite) was studied for iron- and copper-catalyzed reactions at varying pH values. At lower pH values, more reactive oxidants appear to be formed in both iron and copper-catalyzed systems. The aromatic compounds, phenol and benzoic acid, were not oxidized under neutral or alkaline pH conditions, whereas methanol, Reactive Black 5, and arsenite were oxidized to a different degree, depending on the catalytic system. The oxidants responsible for the oxidation of compounds at neutral and alkaline pH values are likely to be high-valent metal complexes of iron and copper (i.e., ferryl and cupryl ions).


Assuntos
Cobre/química , Peróxido de Hidrogênio/química , Ferro/química , Compostos Orgânicos/química , Oxidantes/química , Catálise , Complexos de Coordenação/química , Concentração de Íons de Hidrogênio , Radical Hidroxila/química
19.
Steroids ; 78(3): 356-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23291595

RESUMO

There were synthesized new types of ribbon type steroidal dimers derived from three types of steroidal skeletons (cholic acid, etienic acid, estrone) using Cu(I) catalyzed 1, 3-dipolar cycloaddition reaction. Steroid parts of the molecular "ribbons" are linked by heterocyclic moiety, namely by 2,6-bis((1H-1,2,3-triazol-1-yl)-methyl)pyridine. Compounds synthesized possess different cytotoxic and hormone receptor modulating activities.


Assuntos
Androstenos/química , Ácido Cólico/química , Citotoxinas/síntese química , Estrona/química , Antagonistas de Hormônios/síntese química , Esteroides/síntese química , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , Antagonistas de Hormônios/farmacologia , Humanos , Estrutura Molecular , Piridinas/química , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/metabolismo , Esteroides/farmacologia , Relação Estrutura-Atividade
20.
Water Res ; 46(19): 6454-62, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23047055

RESUMO

To gain insight into factors that control H(2)O(2) persistence and ·OH yield in H(2)O(2)-based in situ chemical oxidation systems, the decomposition of H(2)O(2) and transformation of phenol were investigated in the presence of iron-containing minerals and aquifer materials. Under conditions expected during remediation of soil and groundwater, the stoichiometric efficiency, defined as the amount of phenol transformed per mole of H(2)O(2) decomposed, varied from 0.005 to 0.28%. Among the iron-containing minerals, iron oxides were 2-10 times less efficient in transforming phenol than iron-containing clays and synthetic iron-containing catalysts. In both iron-containing mineral and aquifer materials systems, the stoichiometric efficiency was inversely correlated with the rate of H(2)O(2) decomposition. In aquifer materials systems, the stoichiometric efficiency was also inversely correlated with the Mn content, consistent with the fact that the decomposition of H(2)O(2) on manganese oxides does not produce ·OH. Removal of iron and manganese oxide coatings from the surface of aquifer materials by extraction with citrate-bicarbonate-dithionite slowed the rate of H(2)O(2) decomposition on aquifer materials and increased the stoichiometric efficiency. In addition, the presence of 2 mM of dissolved SiO(2) slowed the rate of H(2)O(2) decomposition on aquifer materials by over 80% without affecting the stoichiometric efficiency.


Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Peróxido de Hidrogênio/química , Minerais/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Radical Hidroxila , Ferro/química , Cinética , Compostos de Manganês/química , Oxirredução , Óxidos/química , Fenol/química , Dióxido de Silício/química , Poluentes do Solo/química , Estados Unidos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA