Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vasc Res ; 61(2): 68-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219725

RESUMO

INTRODUCTION: While multiple factors influence coronary artery bypass graft (CABG) success rates, preserving saphenous vein endothelium during surgery may improve patency. Standard preparations include saphenous vein preparation in heparinized saline (saline) which can result in endothelial loss and damage. Here, we investigated the impact of preparing saphenous graft vessels in heparinized patient blood (blood) versus saline. METHODS: Saphenous vein tissues from a total of 23 patients undergoing CABG were split into 2 groups (1) saline and (2) heparinized patient blood. Excess tissue was fixed for analysis immediately following surgery. Level of endothelial coverage, oxidative stress marker 4-hydroxynonenal (4HNE), and oxidative stress protective marker nuclear factor erythroid 2-related factor 2 (NRF2) were evaluated. RESULTS: In saline patient veins, histological analysis revealed a limited luminal layer, suggesting a loss of endothelial cells (ECs). Immunofluorescent staining of EC markers vascular endothelial cadherin (VE-cadherin) and endothelial nitric oxide identified a significant improvement in EC coverage in the blood versus saline groups. Although both treatment groups expressed 4HNE to similar levels, EC blood samples expressed higher levels of NRF2. CONCLUSION: Our data indicate that use of heparinized patient blood helps preserve the endothelium and promotes vein graft health. This has the potential to improve long-term outcomes in patients.


Assuntos
Células Endoteliais , Veia Safena , Humanos , Veia Safena/patologia , Fator 2 Relacionado a NF-E2 , Endotélio Vascular/patologia , Ponte de Artéria Coronária/efeitos adversos
2.
Biomolecules ; 13(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37189457

RESUMO

The platelet-derived growth factor-BB (PDGF-BB) pathway provides critical regulation of cerebrovascular pericytes, orchestrating their investment and retention within the brain microcirculation. Dysregulated PDGF Receptor-beta (PDGFRß) signaling can lead to pericyte defects that compromise blood-brain barrier (BBB) integrity and cerebral perfusion, impairing neuronal activity and viability, which fuels cognitive and memory deficits. Receptor tyrosine kinases such as PDGF-BB and vascular endothelial growth factor-A (VEGF-A) are often modulated by soluble isoforms of cognate receptors that establish signaling activity within a physiological range. Soluble PDGFRß (sPDGFRß) isoforms have been reported to form by enzymatic cleavage from cerebrovascular mural cells, and pericytes in particular, largely under pathological conditions. However, pre-mRNA alternative splicing has not been widely explored as a possible mechanism for generating sPDGFRß variants, and specifically during tissue homeostasis. Here, we found sPDGFRß protein in the murine brain and other tissues under normal, physiological conditions. Utilizing brain samples for follow-on analysis, we identified mRNA sequences corresponding to sPDGFRß isoforms, which facilitated construction of predicted protein structures and related amino acid sequences. Human cell lines yielded comparable sequences and protein model predictions. Retention of ligand binding capacity was confirmed for sPDGFRß by co-immunoprecipitation. Visualizing fluorescently labeled sPDGFRß transcripts revealed a spatial distribution corresponding to murine brain pericytes alongside cerebrovascular endothelium. Soluble PDGFRß protein was detected throughout the brain parenchyma in distinct regions, such as along the lateral ventricles, with signals also found more broadly adjacent to cerebral microvessels consistent with pericyte labeling. To better understand how sPDGFRß variants might be regulated, we found elevated transcript and protein levels in the murine brain with age, and acute hypoxia increased sPDGFRß variant transcripts in a cell-based model of intact vessels. Our findings indicate that soluble isoforms of PDGFRß likely arise from pre-mRNA alternative splicing, in addition to enzymatic cleavage mechanisms, and these variants exist under normal physiological conditions. Follow-on studies will be needed to establish potential roles for sPDGFRß in regulating PDGF-BB signaling to maintain pericyte quiescence, BBB integrity, and cerebral perfusion-critical processes underlying neuronal health and function, and in turn, memory and cognition.


Assuntos
Precursores de RNA , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Humanos , Becaplermina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Precursores de RNA/genética , Encéfalo/metabolismo , Hipóxia/metabolismo , Envelhecimento , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
3.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638526

RESUMO

Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action, and the potential for these molecules in the treatment of disease.


Assuntos
Conexinas/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Animais , Junções Comunicantes/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA