Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 54(2): 252-270, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32176842

RESUMO

BACKGROUND/AIMS: Store-operated Ca2+ entry (SOCE) through plasma membrane Ca2+ channel Orai1 is essential for many cellular processes. SOCE, activated by ER Ca2+ store-depletion, relies on the gating function of STIM1 Orai1-activating region SOAR of the ER-anchored Ca2+-sensing protein STIM1. Electrophysiologically, SOCE is characterized as Ca2+ release-activated Ca2+ current (ICRAC). A major regulatory mechanism that prevents deleterious Ca2+ overload is the slow Ca2+-dependent inactivation (SCDI) of ICRAC. Several studies have suggested a role of Ca2+/calmodulin (Ca2+/CaM) in triggering SCDI. However, a direct contribution of STIM1 in regulating Ca2+/CaM-mediated SCDI of ICRAC is as yet unclear. METHODS: The Ca2+/CaM binding to STIM1 was tested by pulling down recombinant GFP-tagged human STIM1 C-terminal fragments on CaM sepharose beads. STIM1 was knocked out by CRISPR/Cas9 technique in HEK293 cells stably overexpressing human Orai1. Store-operated Ca2+ influx was measured using Fluorometric Imaging Plate Reader and whole-cell patch clamp in cells transfected with STIM1 CaM binding mutants. The involvement of Ca2+/CaM in SCDI was investigated by including recombinant human CaM in patch pipette in electrophysiology. RESULTS: Here we identified residues Leu374/Val375 (H1) and Leu390/Phe391 (H2) within SOAR that serve as hydrophobic anchor sites for Ca2+/CaM binding. The bifunctional H2 site is critical for both Orai1 activation and Ca2+/CaM binding. Single residue mutations of Phe391 to less hydrophobic residues significantly diminished SOCE and ICRAC, independent of Ca2+/CaM. Hence, the role of H2 residues in Ca2+/CaM-mediated SCDI cannot be precisely evaluated. In contrast, the H1 site controls exclusively Ca2+/CaM binding and subsequently SCDI, but not Orai1 activation. V375A but not V375W substitution eliminated SCDI of ICRAC caused by Ca2+/CaM, proving a direct role of STIM1 in coordinating SCDI. CONCLUSION: Taken together, we propose a mechanistic model, wherein binding of Ca2+/CaM to STIM1 hydrophobic anchor residues, H1 and H2, triggers SCDI by disrupting the functional interaction between STIM1 and Orai1. Our findings reveal how STIM1, Orai1, and Ca2+/CaM are functionally coordinated to control ICRAC.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/fisiologia , Sistemas CRISPR-Cas , Canais de Cálcio/genética , Sinalização do Cálcio , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Modelos Químicos , Modelos Moleculares , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/genética , Ligação Proteica , Domínios Proteicos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Regulação para Cima
2.
PLoS One ; 9(1): e85418, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416406

RESUMO

The equipment of the plasma membrane in Saccharomyces cerevisiae with specific nutrient transporters is highly regulated by transcription, translation and protein trafficking allowing growth in changing environments. The activity of these transporters depends on a H(+) gradient across the plasma membrane generated by the H(+)-ATPase Pma1. We found that the polytopic membrane protein Ist2 in the cortical endoplasmic reticulum (ER) is required for efficient leucine uptake during the transition from fermentation to respiration. Experiments employing tandem fluorescence timer protein tag showed that Ist2 was necessary for efficient trafficking of newly synthesized leucine transporter Bap2 from the ER to the plasma membrane. This finding explains the growth defect of ist2Δ mutants during nutritional challenges and illustrates the important role of physical coupling between cortical ER and plasma membrane.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Regulação Fúngica da Expressão Gênica , ATPases Translocadoras de Prótons/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fermentação , Transporte de Íons , Fosforilação Oxidativa , Transporte Proteico , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Biosci Rep ; 33(5)2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24044355

RESUMO

Ca2+ (calcium) homoeostasis and signalling rely on physical contacts between Ca2+ sensors in the ER (endoplasmic reticulum) and Ca2+ channels in the PM (plasma membrane). STIM1 (stromal interaction molecule 1) and STIM2 Ca2+ sensors oligomerize upon Ca2+ depletion in the ER lumen, contact phosphoinositides at the PM via their cytosolic lysine (K)-rich domains, and activate Ca2+ channels. Differential sensitivities of STIM1 and STIM2 towards ER luminal Ca2+ have been studied but responses towards elevated cytosolic Ca2+ concentration and the mechanism of lipid binding remain unclear. We found that tetramerization of the STIM1 K-rich domain is necessary for efficient binding to PI(4,5)P2-containing PM-like liposomes consistent with an oligomerization-driven STIM1 activation. In contrast, dimerization of STIM2 K-rich domain was sufficient for lipid binding. Furthermore, the K-rich domain of STIM2, but not of STIM1, forms an amphipathic α-helix. These distinct features of the STIM2 K-rich domain cause an increased affinity for PI(4,5)P2, consistent with the lower activation threshold of STIM2 and a function as regulator of basal Ca2+ levels. Concomitant with higher affinity for PM lipids, binding of CaM (calmodulin) inhibited the interaction of the STIM2 K-rich domain with liposomes in a Ca2+ and PI(4,5)P2 concentration-dependent manner. Therefore we suggest that elevated cytosolic Ca2+ concentration down-regulates STIM2-mediated ER-PM contacts via CaM binding.


Assuntos
Moléculas de Adesão Celular/química , Proteínas de Membrana/química , Proteínas de Neoplasias/química , Sítios de Ligação , Ligação Competitiva , Cálcio/química , Calmodulina/química , Humanos , Lipossomos/química , Lipídeos de Membrana , Fosfatidilinositol 4,5-Difosfato/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal
4.
Nat Chem Biol ; 9(2): 119-25, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23242256

RESUMO

Glutathione is central to cellular redox chemistry. The majority of glutathione redox research has been based on the chemical analysis of whole-cell extracts, which unavoidably destroy subcellular compartment-specific information. Compartment-specific real-time measurements based on genetically encoded fluorescent probes now suggest that the cytosolic glutathione redox potential is about 100 mV more reducing than previously thought. Using these probes in yeast, we show that even during severe oxidative stress, the cytosolic glutathione disulfide (GSSG) concentration is much more tightly regulated than expected and provides a mechanistic explanation for the discrepancy with conventional measurements. GSSG that is not immediately reduced in the cytosol is rapidly transported into the vacuole by the ABC-C transporter Ycf1. The amount of whole-cell GSSG is entirely dependent on Ycf1 and uninformative about the cytosolic glutathione pool. Applying these insights, we identify Trx2 and Grx2 as efficient backup systems to glutathione reductase for cytosolic GSSG reduction.


Assuntos
Citosol/metabolismo , Dissulfeto de Glutationa/química , Oxirredução , Transportadores de Cassetes de Ligação de ATP/metabolismo , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Homeostase , Humanos , Modelos Biológicos , Modelos Químicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/metabolismo , Fatores de Tempo , Vacúolos/metabolismo
5.
PLoS One ; 7(7): e39703, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808051

RESUMO

The endoplasmic reticulum (ER) forms contacts with the plasma membrane. These contacts are known to function in non-vesicular lipid transport and signaling. Ist2 resides in specific domains of the ER in Saccharomyces cerevisiae where it binds phosphoinositide lipids at the cytosolic face of the plasma membrane. Here, we report that Ist2 recruits domains of the yeast ER to the plasma membrane. Ist2 determines the amount of cortical ER present and the distance between the ER and the plasma membrane. Deletion of IST2 resulted in an increased distance between ER and plasma membrane and allowed access of ribosomes to the space between the two membranes. Cells that overexpress Ist2 showed an association of the nucleus with the plasma membrane. The morphology of the ER and yeast growth were sensitive to the abundance of Ist2. Moreover, Ist2-dependent effects on cytosolic pH and genetic interactions link Ist2 to the activity of the H(+) pump Pma1 in the plasma membrane during cellular adaptation to the growth phase of the culture. Consistently we found a partial colocalization of Ist2-containing cortical ER and Pma1-containing domains of the plasma membrane. Hence Ist2 may be critically positioned in domains that couple functions of the ER and the plasma membrane.


Assuntos
Membrana Celular/genética , Retículo Endoplasmático/genética , Regulação Fúngica da Expressão Gênica , ATPases Translocadoras de Prótons/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citosol/metabolismo , Citosol/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Concentração de Íons de Hidrogênio , Microscopia Confocal , Microscopia de Fluorescência , Fosfatidilinositóis/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
6.
Traffic ; 13(7): 992-1003, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22498042

RESUMO

STIM1 is a core component of the store-operated Ca²âº-entry channel involved in Ca²âº-signaling with an important role in the activation of immune cells and many other cell types. In response to cell activation, STIM1 protein senses low Ca²âº concentration in the lumen of the endoplasmic reticulum (ER) and activates the channel protein Orai1 in the plasma membrane by direct physical contact. The related protein STIM2 functions similar but its physiological role is less well defined. We found that STIM2, but not STIM1, contains a di-lysine ER-retention signal. This restricts the function of STIM2 as Ca²âº sensor to the ER while STIM1 can reach the plasma membrane. The intracellular distribution of STIM1 is regulated in a cell-cycle-dependent manner with cell surface expression of STIM1 during mitosis. Efficient retention of STIM1 in the ER during interphase depends on its lysine-rich domain and a di-arginine ER retention signal. Store-operated Ca²âº-entry enhanced ER retention, suggesting that trafficking of STIM1 is regulated and this regulation contributes to STIM1s role as multifunctional component in Ca²âº-signaling.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Sinais Direcionadores de Proteínas , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteína ORAI1 , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal
7.
Cell Stem Cell ; 5(2): 178-90, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19664992

RESUMO

Adult neurogenesis persists in the subventricular zone and the dentate gyrus and can be induced upon central nervous system injury. However, the final contribution of newborn neurons to neuronal networks is limited. Here we show that in neural stem cells, stimulation of the "death receptor" CD95 does not trigger apoptosis but unexpectedly leads to increased stem cell survival and neuronal specification. These effects are mediated via activation of the Src/PI3K/AKT/mTOR signaling pathway, ultimately leading to a global increase in protein translation. Induction of neurogenesis by CD95 was further confirmed in the ischemic CA1 region, in the naive dentate gyrus, and after forced expression of CD95L in the adult subventricular zone. Lack of hippocampal CD95 resulted in a reduction in neurogenesis and working memory deficits. Following global ischemia, CD95-mediated brain repair rescued behavioral impairment. Thus, we identify the CD95/CD95L system as an instructive signal for ongoing and injury-induced neurogenesis.


Assuntos
Células-Tronco Adultas/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Proteína Ligante Fas/metabolismo , Neurogênese/fisiologia , Receptor fas/metabolismo , Células-Tronco Adultas/transplante , Animais , Isquemia Encefálica/terapia , Feminino , Expressão Gênica/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Transplante de Células-Tronco , Serina-Treonina Quinases TOR
8.
J Cell Biol ; 169(4): 613-22, 2005 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-15911878

RESUMO

Classic studies of temperature-sensitive secretory (sec) mutants have demonstrated that secreted and plasma membrane proteins follow a common SEC pathway via the endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles to the cell periphery. The yeast protein Ist2p, which is synthesized from a localized mRNA, travels from the ER to the plasma membrane via a novel route that operates independently of the formation of coat protein complex II-coated vesicles. In this study, we show that the COOH-terminal domain of Ist2p is necessary and sufficient to mediate SEC18-independent sorting when it is positioned at the COOH terminus of different integral membrane proteins and exposed to the cytoplasm. This domain functions as a dominant plasma membrane localization determinant that overrides other protein sorting signals. Based on these observations, we suggest a local synthesis of Ist2p at cortical ER sites, from where the protein is sorted by a novel mechanism to the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Biochem J ; 380(Pt 3): 823-30, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15012629

RESUMO

Scp160p interacts in an mRNA-dependent manner with translating ribosomes via multiple RNA-binding heterogeneous nuclear ribonucleoprotein K-homology (KH) domains. In the present study, we show by protein-protein cross-linking that Scp160p is in close proximity to translation elongation factor 1A and the WD40 (Trp-Asp 40)-repeat containing protein Asc1p at ribosomes. Analysis of a truncation mutant revealed that the C-terminus of Scp160p is essential for ribosome binding and that Cys(1067) at the C-terminus of Scp160p is required to obtain these cross-links. The interaction of Scp160p with ribosomes depends on Asc1p. In fast-growing yeast cells, nearly all Asc1p is tightly bound to ribosomes, but it can also be present in a ribosome-free form depending on growth conditions. The functional homologue of Asc1p, mammalian RACK1 (receptor of activated C kinase), was previously characterized as an adaptor protein bridging activated signalling molecules with their substrates. Our results suggest that Scp160p connects specific mRNAs, ribosomes and a translation factor with an adaptor for signalling molecules. These interactions might regulate the translation activity of ribosomes programmed with specific mRNAs.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Polirribossomos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Reagentes de Ligações Cruzadas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Proteínas de Ligação ao GTP , Mutação/fisiologia , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/fisiologia , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA