Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(6): 130614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598971

RESUMO

BACKGROUND: Deregulation of cell death is a common characteristic of cancer, and resistance to this process often occurs in lung cancer. Understanding the molecular mechanisms underlying an aberrant cell death is important. Recent studies have emphasized the involvement of calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) in lung cancer aggressiveness, its influence on cell death regulation remains largely unexplored. METHODS: CAMSAP3 was knockout in lung cancer cells using CRISPR-Cas9 system. Cell death and autophagy were evaluated using MTT and autophagic detection assays. Protein interactions were performed by proteomic analysis and immunoprecipitation. Protein expressions and their cytoplasmic localization were analyzed through immunoblotting and immunofluorescence techniques. RESULTS: This study reveals a significant correlation between low CAMSAP3 expression and poor overall survival rates in lung cancer patients. Proteomic analysis identified high mobility group box 1 (HMGB1) as a candidate interacting protein involved in the regulation of cell death. Treatment with trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs) resulted in increased HMGB1 acetylation and its translocation to the cytoplasm and secretion, thereby inducing autophagic cell death. However, this process was diminished in CAMSAP3 knockout lung cancer cells. Mechanistically, immunoprecipitation indicated an interaction between CAMSAP3 and HMGB1, particularly with its acetylated form, in which this complex was elevated in the presence of TSA. CONCLUSIONS: CAMSAP3 is prerequisite for TSA-mediated autophagic cell death by interacting with cytoplasmic acetylated HMGB1 and enhancing its release. SIGNIFICANT: This finding provides molecular insights into the role of CAMSAP3 in regulating cell death, highlighting its potential as a therapeutic target for lung cancer treatment.


Assuntos
Proteína HMGB1 , Neoplasias Pulmonares , Humanos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Acetilação , Autofagia , Linhagem Celular Tumoral , Morte Celular , Células A549 , Ácidos Hidroxâmicos/farmacologia
2.
ACS Pharmacol Transl Sci ; 6(8): 1143-1154, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588759

RESUMO

Non-small-cell lung cancer (NSCLC), the most prevalent form of lung cancer, is associated with an unfavorable prognosis owing to its high rate of metastasis. Thus, the identification of new drugs with potent anticancer activities is essential to improve the clinical outcome of this disease. Marine organisms exhibit a diverse source of biologically active compounds with anticancer effects. The anticancer effects of jorunnamycin A (JA) derived from the Thai blue sponge (Xestospongia sp.) and 22-(4'-pyridinecarbonyl) jorunnamycin A (22-(4'-py)-JA), the semisynthetic derivative of JA, have been reported. The present study aimed to investigate the impact of 22-(4'-py)-JA on NSCLC metastasis using in vitro, in vivo, and in silico approaches. The JA derivative inhibited tumor cell invasion and tube formation in human umbilical vein endothelial cells (HUVECs). The computational analysis demonstrated strong and stable interactions between 22-(4'-py)-JA and the AKT protein. Further examinations into the molecular mechanisms revealed the suppression of AKT/mTOR/p70S6K signaling by 22-(4'-py)-JA, leading to the downregulation of matrix metalloproteinases (MMP-2 and MMP-9), hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF). Furthermore, 22-(4'-py)-JA suppressed in vivo metastasis by decreasing the number of colonies in the lung. These findings indicated the antimetastasis activity of 22-(4'-py)-JA, which might prove useful for further clinical applications.

3.
Life Sci ; 322: 121655, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37019300

RESUMO

AIMS: Cancer metastasis is a major cause of lung cancer-related mortality, so identification of related molecular mechanisms is of interest. Calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) has been implicated in lung cancer malignancies; however, its role in metastatic processes, including invasion and angiogenesis, is largely unknown. MAIN METHOD: The clinical relevance of CAMSAP3 expression in lung cancer was evaluated. The relevance of CAMSAP3 expression to in vitro cell invasion and angiogenesis was assessed in human lung cancer cells and endothelial cells, respectively. The molecular mechanism was identified by qRT-PCR, immunoprecipitation, mass spectrometry, and RNA immunoprecipitation. The in vivo metastatic and angiogenic activities of lung cancer cells were assessed. KEY FINDINGS: Low CAMSAP3 expression was found in malignant lung tissues and strongly correlated with a poor prognosis in lung adenocarcinoma (LUAD). CAMSAP3-knockout NSCLC exhibited high invasive ability, and CAMSAP3 knockout induced HUVEC proliferation and tube formation; these effects were significantly attenuated by reintroduction of exogenous wild-type CAMSAP3. Mechanistically, in the absence of CAMSAP3, the expression of hypoxia-inducible factor-1α (HIF-1α) was upregulated, which increased the levels of downstream HIF-1α targets such as vascular endothelial growth factor A (VEGFA) and matrix metalloproteinases (MMPs) 2 and 9. Proteomic analysis revealed that nucleolin (NCL) bound to CAMSAP3 to regulate HIF-1α mRNA stabilization. In addition, CAMSAP3-knockout lung cancer cells displayed highly aggressive behavior in metastasis and angiogenesis in vivo. SIGNIFICANCE: This study reveals that CAMSAP3 plays a negative regulatory role in lung cancer cell metastatic behavior both in vitro and in vivo through NCL/HIF-1α mRNA complex stabilization.


Assuntos
Neoplasias Pulmonares , Espectrina , Humanos , Espectrina/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteômica , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Regulação Neoplásica da Expressão Gênica , Pulmão/metabolismo , Invasividade Neoplásica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nucleolina
4.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499051

RESUMO

Microtubule-associated proteins (MAPs) play essential roles in cancer development. This study aimed to identify transcriptomic biomarkers among MAP genes for the diagnosis and prognosis of lung cancer by analyzing differential gene expressions and correlations with tumor progression. Gene expression data of patients with lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) from the Cancer Genome Atlas (TCGA) database were used to identify differentially expressed MAP genes (DEMGs). Their prognostic value was evaluated by Kaplan-Meier and Cox regression analysis. Moreover, the relationships between alterations in lung cancer hallmark genes and the expression levels of DEMGs were investigated. The candidate biomarker genes were validated using three independent datasets from the Gene Expression Omnibus (GEO) database and by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on clinical samples. A total of 88 DEMGs were identified from TCGA data. The 20 that showed the highest differential expression were subjected to association analysis with hallmark genes. Genetic alterations in TP53, EGFR, PTEN, NTRK1, and PIK3CA correlated with the expression of most of these DEMGs. Of these, six candidates-NUF2, KIF4A, KIF18B, DLGAP5, NEK2, and LRRK2-were significantly differentially expressed and correlated with the overall survival (OS) of the patients. The mRNA expression profiles of these candidates were consistently verified using three GEO datasets and qRT-PCR on patient lung tissues. The expression levels of NUF2, KIF4A, KIF18B, DLGAP5, NEK2, and LRRK2 can serve as diagnostic biomarkers for LUAD and LUSC. Moreover, the first five can serve as prognostic biomarkers for LUAD, while LRRK2 can be a prognostic biomarker for LUSC. Our research describes the novel role and potential application of MAP-encoding genes in clinical practice.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Prognóstico , Proteínas Associadas aos Microtúbulos/genética , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , Quinases Relacionadas a NIMA
5.
BMC Complement Med Ther ; 21(1): 87, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750378

RESUMO

BACKGROUND: Lung cancer is one of the leading causes of death worldwide due to its strong proliferative and metastatic capabilities. The suppression of these aggressive behaviors is of interest in anticancer drug research and discovery. In recent years, many plants have been explored in order to discover new bioactive secondary metabolites to treat cancers or enhance treatment efficiency. Aspiletrein A (AA) is a steroidal saponin isolated from the whole endemic species Aspidistra letreae in Vietnam. Previously, elucidation of the structure of AA and screening of its cytotoxic activity against several cancer cell lines were reported. However, the antitumor activities and mechanisms of action have not yet been elucidated. In this study, we demonstrated the anti-proliferative, anti-migrative and anti-invasive effects of AA on H460, H23 and A549 human lung cancer cells. METHODS: MTT, wound healing and Transwell invasion assays were used to evaluate the anti-proliferation, anti-migration and anti-invasion effects of AA, respectively. Moreover, the inhibitory effect of AA on the activity of protein kinase B (Akt), a central mediator of cancer properties, and apoptotic regulators in the Bcl-2 family proteins were investigated by Western blotting. RESULTS: AA exhibits antimetastatic effects in human lung cancer cells through the inhibition of the pAkt/Akt signaling pathway, which in turn resulted in a significant inhibitory effect of AA on the migration and invasion of the examined lung cancer cells. CONCLUSIONS: Aspiletrein A may be a potent inhibitor of protein kinase B (Akt). Hence, AA could be further explored as a potential antimetastatic lead compound.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Asparagaceae/química , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Saponinas/farmacologia , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA