Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sport Health Sci ; 9(2): 132-139, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32099721

RESUMO

Background: Osteoarthritis is one of the leading causes of pain and disability worldwide, and a large percentage of patients with osteoarthritis are individuals who are also obese. In recent years, a series of animal models have demonstrated that obesity-inducing diets can result in synovial joint damage (both with and without the superimposition of trauma), which may be related to changes in percentage of body fat and a series of low-level systemic inflammatory mediators. Of note, there is a disparity between whether the dietary challenges commence at weaning, representing a weanling onset, or at skeletal maturity, representing an adult onset of obesity. We wished to evaluate the effect of the dietary exposure time and the age at which animals are exposed to a high-fat and high-sucrose (HFS) diet to determine whether these factors may result in disparate outcomes, as there is evidence suggesting that these factors result in differential metabolic disturbances. Based on dietary exposure time, we hypothesized that rats fed an HFS diet for 14 weeks from weaning (HFS Weanling) would demonstrate an increase in knee joint damage scores, whereas rats exposed to the HFS diet for 4 weeks, starting at 12 weeks of age (HFS Adult) and rats exposed to a standard chow diet (Chow) would not display an increase in knee joint damage scores. Methods: Male Sprague-Dawley rats were fed either an HFS diet for 14 weeks from weaning (HFS Weanling) or an HFS diet for 4 weeks, starting at 12 weeks of age (HFS Adult). At sacrifice, joints were scored using the modified Mankin Criteria, and serum was analyzed for a defined subset of inflammatory markers (Interleukin-6, leptin, monocyte chemoattractant protein-1, and tumor necrosis factor α). Results: When the HFS Weanling and HFS Adult groups were compared, both groups had a similar percent of body fat, although the HFS Weanling group had a significantly greater body mass than the HFS Adult group. The HFS Weanling and HFS Adult animals had a significant increase in body mass and percentage of body fat when compared to the Chow group. Although knee joint damage scores were low in all 3 groups, we found, contrary to our hypothesis, that the HFS Adult group had statistically significant greater knee joint damage scores than the Chow and HFS Weanling groups. Furthermore, we observed that the HFS Weanling group did not have significant differences in knee joint damage scores relative to the Chow group. Conclusion: These findings indicate that the HFS Weanling animals were better able to cope with the dietary challenge of an HFS diet than the HFS Adult group. Interestingly, when assessing various serum proinflammatory markers, no significant differences were detected between the HFS Adult and HFS Weanling groups. Although details regarding the mechanisms underlying an increase in knee joint damage scores in the HFS Adult group remain to be elucidated, these findings indicate that dietary exposure time maybe less important than the age at which an HFS diet is introduced. Moreover, increases in serum proinflammatory mediators do not appear to be directly linked to knee joint damage scores in the HFS Weanling group animals but may be partially responsible for the observed knee joint damage in the adults over the very short time of exposure to the HFS diet.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/complicações , Osteoartrite do Joelho/etiologia , Fatores Etários , Animais , Biomarcadores/sangue , Distribuição da Gordura Corporal , Índice de Massa Corporal , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/sangue , Masculino , Obesidade/etiologia , Obesidade/metabolismo , Osteoartrite do Joelho/patologia , Ratos Sprague-Dawley
2.
Can J Surg ; 51(3): 167-72, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18682794

RESUMO

BACKGROUND: Denervation substantially impairs healing of the medial collateral ligament (MCL). Because normal ligaments are sparsely innervated, we hypothesized that neuropeptide-containing neurons would sprout or proliferate after ligament transection, followed by later regression with healing, in a manner analogous to blood vessels. METHODS: We transected the right MCL in 9 mature female New Zealand white rabbits and killed 3 rabbits at 2, 6 or 14 weeks. Alternate sets of 12-mm serial sections of healing MCL scars were examined by fluorescent immunohistochemistry for substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and pan-neuronal marker PGP9.5. RESULTS: Normal MCLs had few peptidergic fibres located in the epiligament in a perivascular pattern. At 2 weeks, PGP9.5-, SP-and CGRP-positive fibres had increased in the epiligament adjacent to the injury. By 6 weeks, there were increases in CGRP-and PGP9.5-positive fibres in epiligament and scar, with similar but less marked increases in SP-positive fibres. At 14 weeks, there was notable regression of immunostained peptidergic nerve fibres in the scar. CONCLUSION: This experiment shows evidence for a remarkable plasticity of ligament innervation after injury, supporting the idea that neuronal factors play a fundamental role in wound healing.


Assuntos
Ligamento Colateral Médio do Joelho/lesões , Ligamento Colateral Médio do Joelho/inervação , Cicatrização/fisiologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Imuno-Histoquímica , Ligamento Colateral Médio do Joelho/metabolismo , Plasticidade Neuronal , Neuropeptídeo Y/metabolismo , Coelhos , Substância P/metabolismo , Ubiquitina Tiolesterase/metabolismo
3.
J Orthop Res ; 26(7): 957-64, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18302239

RESUMO

Previous work has shown that innervation participates in normal ligament healing. The present study was performed to determine if exogenous nerve growth factor (NGF) would improve the healing of injured ligament by promoting reinnervation, blood flow, and angiogenesis. Two groups of 30 Sprague-Dawley rats underwent unilateral medial collateral ligament transection (MCL). One group was given 10 microg NGF and the other was given PBS via osmotic pump over 7 days after injury. After 7, 14, and 42 days, in vivo blood flow was measured using laser speckle perfusion imaging (LSPI). Morphologic assessments of nerve density, vascularity, and angiogenesis inhibitor production were done in three animals at each time point by immunohistochemical staining for the pan-neuronal marker PGP9.5, the endothelial marker vWF, and the angiogenesis inhibitor thrombospondin-2 (TSP-2). Ligament scar material and structural mechanical properties were assessed in seven rats at each time point. Increased nerve density was promoted by NGF at both 14 and 42 days. Exposure to NGF also led to increased ligament vascularity, as measured by histologic assessment of vWF immunohistochemistry, although LSPI-measured blood flow was not significantly different from controls. NGF treatment also led to decreased expression of TSP-2 at 14 days. Mechanical testing revealed that exposure to NGF increased failure load by 40%, ultimate tensile strength by 55%, and stiffness by 30% at 42 days. There were no detectable differences between groups in creep properties. The results suggest that local application of NGF can improve ligament healing by promoting both reinnervation and angiogenesis, and results in scars with enhanced mechanical properties.


Assuntos
Ligamento Colateral Médio do Joelho/lesões , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Cicatriz/tratamento farmacológico , Imuno-Histoquímica , Masculino , Ligamento Colateral Médio do Joelho/irrigação sanguínea , Ligamento Colateral Médio do Joelho/inervação , Ligamento Colateral Médio do Joelho/fisiologia , Fator de Crescimento Neural/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos
4.
J Orthop Res ; 24(9): 1842-53, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16865716

RESUMO

Previous experiments revealed that denervation impairs healing of the MCL. This suggested the hypothesis that denervation would decrease repair-associated mRNA levels in the injured MCL when compared with normally innervated injured MCL. Adult, skeletally mature female rabbits were assigned to one of four groups: unoperated control, femoral nerve transection alone (denervated controls), MCL partial tear or denervated MCL partial tear. At three days, two weeks, six weeks or sixteen weeks post-surgery, cohorts of 6 rabbits from each experimental group were killed. Ligaments were harvested, RNA extracted and RT-PCR was performed using rabbitspecific primers. In the denervated injury group, mRNA levels for the angiogenesis-associated gene MMP-13, matrix components Collagen I and III, growth factor TGF-beta and angiogenesis inhibitors TIMP-3, and TSP-1 had all increased by two-weeks post-injury, in comparison to the non-denervated injury group (p < or = 0.01). An increased level of TSP-1 mRNA was also detected in the denervated injured group at sixteen weeks post injury (p < or = 0.01). Contrary to the initial hypothesis, denervation led to increased mRNA levels for many relevant molecules during the early stages of MCL healing. Thus, inappropriate timing of over-expression of some molecules may potentially contribute to the decreased quality of the scar tissue, particularly molecules such as TSP-1. Neuronal derived factors strongly influence the in vivo metabolic activity of ligament and scar fibroblasts in the initial phases of healing.


Assuntos
Traumatismos do Joelho/metabolismo , Ligamento Colateral Médio do Joelho/inervação , Ligamento Colateral Médio do Joelho/metabolismo , RNA Mensageiro/metabolismo , Cicatrização/fisiologia , Animais , Cicatriz/genética , Cicatriz/metabolismo , Colágeno/genética , Colágeno/metabolismo , Denervação , Feminino , Nervo Femoral/cirurgia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Ligamento Colateral Médio do Joelho/lesões , Modelos Animais , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , RNA Mensageiro/genética , Coelhos , Trombospondina 1/genética , Trombospondina 1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Osteoarthritis Cartilage ; 13(5): 418-25, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15882565

RESUMO

OBJECTIVE: Murine brachymorphism (bm) results from an autosomal recessive mutation of the Papss2 gene that encodes 3'-phosphoadenosine 5'-phosphosulfate synthetase 2, one of the principal enzymes required for the sulfation of extracellular matrix molecules in cartilage and other tissues. A spondyloepimetaphyseal dysplasia has been identified in Pakistani kindred having a mutation of PAPSS2. In addition to skeletal malformations that include short stature evident at birth due to limb shortening, brachydactyly, and kyphoscoliosis, affected individuals demonstrate premature onset degenerative joint disease. We investigated whether loss of Papss2 activity would similarly lead to degenerative joint disease in mice. METHODS: Mice carrying the bm mutation on a C57BL/6 background were obtained from the Jackson Laboratory. Limbs were analyzed by micro-computed tomography (microCT) and histology. RESULTS: At 12 months of age both male and female bm mice exhibited severe degenerative knee joint disease, with cartilage damage being primarily evident in the patello-femoral and medial compartments. Control 12-14-month-old C57BL/6 mice, in contrast, only occasionally demonstrated minimal cartilage damage. muCT imaging of bm limbs revealed shortened diaphyses associated with flared metaphyses in the proximal elements of both fore and hind limbs. Additionally, the bm hind limbs demonstrated extensive structural alterations, characterized by distortion of the patello-femoral groove, and prominent bowing of both tibia and fibula. CONCLUSIONS: The bm mutant, which develops severe articular cartilage lesions of the knee joint by approximately 12 months of age, represents a novel example of murine degenerative joint disease, possibly representing a model of human PAPSS2 deficiency-associated arthrosis.


Assuntos
Artropatias/enzimologia , Complexos Multienzimáticos/metabolismo , Sulfato Adenililtransferase/metabolismo , Animais , Cartilagem Articular/patologia , Modelos Animais de Doenças , Feminino , Fêmur/patologia , Fíbula/patologia , Membro Posterior , Artropatias/patologia , Articulações/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/deficiência , Complexos Multienzimáticos/genética , Mutação , Patela/patologia , Sulfato Adenililtransferase/deficiência , Sulfato Adenililtransferase/genética , Tíbia/patologia , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA