Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Orthop Res ; 42(4): 843-854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37807082

RESUMO

This study aims at assessing approaches for generating high-resolution magnetic resonance imaging- (MRI-) based synthetic computed tomography (sCT) images suitable for orthopedic care using a deep learning model trained on low-resolution computed tomography (CT) data. To that end, paired MRI and CT data of three anatomical regions were used: high-resolution knee and ankle data, and low-resolution hip data. Four experiments were conducted to investigate the impact of low-resolution training CT data on sCT generation and to find ways to train models on low-resolution data while providing high-resolution sCT images. Experiments included resampling of the training data or augmentation of the low-resolution data with high-resolution data. Training sCT generation models using low-resolution CT data resulted in blurry sCT images. By resampling the MRI/CT pairs before the training, models generated sharper images, presumably through an increase in the MRI/CT mutual information. Alternatively, augmenting the low-resolution with high-resolution data improved sCT in terms of mean absolute error proportionally to the amount of high-resolution data. Overall, the morphological accuracy was satisfactory as assessed by an average intermodal distance between joint centers ranging from 0.7 to 1.2 mm and by an average intermodal root-mean-squared distances between bone surfaces under 0.7 mm. Average dice scores ranged from 79.8% to 87.3% for bony structures. To conclude, this paper proposed approaches to generate high-resolution sCT suitable for orthopedic care using low-resolution data. This can generalize the use of sCT for imaging the musculoskeletal system, paving the way for an MR-only imaging with simplified logistics and no ionizing radiation.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Osso e Ossos , Extremidade Inferior , Processamento de Imagem Assistida por Computador/métodos
2.
Int J Comput Assist Radiol Surg ; 18(12): 2307-2318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37219804

RESUMO

INTRODUCTION: The use of MRI scans for pre-operative surgical planning of forearm osteotomies provides additional information of joint cartilage and soft tissue structures and reduces radiation exposure in comparison with the use of CT scans. In this study, we investigated whether using 3D information obtained from MRI with and without cartilage information leads to a different outcome of pre-operative planning. METHODS: Bilateral CT and MRI scans of the forearms of 10 adolescent and young adult patients with a unilateral bone deformation were acquired in a prospective study. The bones were segmented from CT and MRI, and cartilage only from MRI. The deformed bones were virtually reconstructed, by registering the joint ends to the healthy contralateral side. An optimal osteotomy plane was determined that minimized the distance between the resulting fragments. This process was performed in threefold: using the CT and MRI bone segmentations, and the MRI cartilage segmentations. RESULTS: Comparison of bone segmentation from MRI and CT scan resulted in a 0.95 ± 0.02 Dice Similarity Coefficient and 0.42 ± 0.07 mm Mean Absolute Surface Distance. All realignment parameters showed excellent reliability across the different segmentations. However, the mean differences in translational realignment between CT and MRI bone segmentations (4.5 ± 2.1 mm) and between MRI bone and MRI bone and cartilage segmentations (2.8 ± 2.1 mm) were shown to be clinically and statistically significant. A significant positive correlation was found between the translational realignment and the relative amount of cartilage. CONCLUSION: This study indicates that although bone realignment remained largely similar when using MRI with and without cartilage information compared to using CT, the small differences in segmentation could induce statistically and clinically significant differences in the osteotomy planning. We also showed that endochondral cartilage might be a non-negligible factor when planning osteotomies for young patients.


Assuntos
Cartilagem Articular , Antebraço , Adulto Jovem , Adolescente , Humanos , Antebraço/cirurgia , Reprodutibilidade dos Testes , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Osteotomia/métodos
3.
J Bone Joint Surg Am ; 105(9): 700-712, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947661

RESUMO

BACKGROUND: Preoperative planning of lower-limb realignment surgical procedures necessitates the quantification of alignment parameters by using landmarks placed on medical scans. Conventionally, alignment measurements are performed on 2-dimensional (2D) standing radiographs. To enable fast and accurate 3-dimensional (3D) planning of orthopaedic surgery, automatic calculation of the lower-limb alignment from 3D bone models is required. The goal of this study was to develop, validate, and apply a method that automatically quantifies the parameters defining lower-limb alignment from computed tomographic (CT) scans. METHODS: CT scans of the lower extremities of 50 subjects were both manually and automatically segmented. Thirty-two manual landmarks were positioned twice on the bone segmentations to assess intraobserver reliability in a subset of 20 subjects. The landmarks were also positioned automatically using a shape-fitting algorithm. The landmarks were then used to calculate 25 angles describing the lower-limb alignment for all 50 subjects. RESULTS: The mean absolute difference (and standard deviation) between repeat measurements using the manual method was 2.01 ± 1.64 mm for the landmark positions and 1.05° ± 1.48° for the landmark angles, whereas the mean absolute difference between the manual and fully automatic methods was 2.17 ± 1.37 mm for the landmark positions and 1.10° ± 1.16° for the landmark angles. The manual method required approximately 60 minutes of manual interaction, compared with 12 minutes of computation time for the fully automatic method. The intraclass correlation coefficient showed good to excellent reliability between the manual and automatic assessments for 23 of 25 angles, and the same was true for the intraobserver reliability in the manual method. The mean for the 50 subjects was within the expected range for 18 of the 25 automatically calculated angles. CONCLUSIONS: We developed a method that automatically calculated a comprehensive range of 25 measurements that defined lower-limb alignment in considerably less time, and with differences relative to the manual method that were comparable to the differences between repeated manual assessments. This method could thus be used as an efficient alternative to manual assessment of alignment. LEVEL OF EVIDENCE: Diagnostic Level III . See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Extremidade Inferior , Tomografia Computadorizada por Raios X , Humanos , Reprodutibilidade dos Testes , Extremidade Inferior/diagnóstico por imagem , Radiografia , Algoritmos
4.
Acta Orthop ; 93: 296-302, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35129201

RESUMO

BACKGROUND AND PURPOSE: The Chiari osteotomy was a regular treatment for developmental hip dysplasia before it became mostly reserved as a salvage therapy. However, the long-term survival of the Chiari osteotomy has not been systematically investigated. We investigated the survival time of the Chiari osteotomy until conversion to total hip arthroplasty (THA) in patients with primary hip dysplasia, and factors which correlated with survival, complications, and the improvement measured in radiographic parameters. PATIENTS AND METHODS: Studies were included when describing patients (> 16 years) with primary hip dysplasia treated with a Chiari osteotomy procedure with 8 years' follow-up. Data on patient characteristics, indications, complications, radiographic parameters, and survival time (endpoint: conversion to THA) were extracted. RESULTS: 8 studies were included. The average postoperative center-edge angle, acetabular head index, and Sharp angle were generally restored within the target range. 3 studies reported Kaplan-Meier survival rates varying from 96% at 10 years to 72% at 20 years' follow-up. Negative survival factors were high age at intervention and pre-existing advanced preoperative osteoarthritis. Moreover, reported complications ranged between 0% and 28.3 %. INTERPRETATION: The Chiari osteotomy has high reported survival rates and is capable of restoring radiographic hip parameters to healthy values. When carefully selected by young age, and a low osteoarthritis score, patients benefit from the Chiari osteotomy with satisfactory survival rates. The position of the Chiari osteotomy in relation to the periacetabular osteotomies should be further (re-)explored.


Assuntos
Luxação Congênita de Quadril , Luxação do Quadril , Osteoartrite do Quadril , Osteoartrite , Acetábulo/cirurgia , Adolescente , Adulto , Seguimentos , Luxação do Quadril/cirurgia , Luxação Congênita de Quadril/complicações , Luxação Congênita de Quadril/cirurgia , Humanos , Osteoartrite/etiologia , Osteoartrite do Quadril/complicações , Osteotomia/métodos , Estudos Retrospectivos , Resultado do Tratamento
5.
Sci Rep ; 12(1): 3032, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194117

RESUMO

The concept of a novel patient-specific 3D-printed shelf implant should be evaluated in a relevant large animal model with hip dysplasia. Therefore, three dogs with radiographic bilateral hip dysplasia and a positive subluxation test underwent unilateral acetabular augmentation with a 3D-printed dog-specific titanium implant. The contralateral side served as control. The implants were designed on CT-based pelvic bone segmentations and extended the dysplastic acetabular rim to increase the weight bearing surface without impairing the range of motion. Outcome was assessed by clinical observation, manual subluxation testing, radiography, CT, and gait analysis from 6 weeks preoperatively until termination at 26 weeks postoperatively. Thereafter, all hip joints underwent histopathological examination. The implantation and recovery from surgery was uneventful. Clinical subluxation tests at the intervention side became negative. Imaging showed medialization of the femoral head at the intervention side and the mean (range) CE-angle increased from 94° (84°-99°) preoperative to 119° (117°-120°) postoperative. Gait analysis parameters returned to pre-operative levels after an average follow-up of 6 weeks. Histology showed a thickened synovial capsule between the implant and the femoral head without any evidence of additional damage to the articular cartilage compared to the control side. The surgical implantation of the 3D shelf was safe and feasible. The patient-specific 3D-printed shelf implants restored the femoral head coverage and stability of dysplastic hips without complications. The presented approach holds promise to treat residual hip dysplasia justifying future veterinary clinical trials to establish clinical effectiveness in a larger cohort to prepare for translation to human clinic.


Assuntos
Luxação do Quadril/diagnóstico por imagem , Luxação do Quadril/terapia , Impressão Tridimensional , Próteses e Implantes , Desenho de Prótese/métodos , Acetábulo , Animais , Modelos Animais de Doenças , Cães , Estudos de Viabilidade , Marcha , Luxação do Quadril/fisiopatologia , Humanos , Ossos Pélvicos , Segurança , Titânio , Tomografia Computadorizada por Raios X/métodos
6.
Eur Radiol ; 32(7): 4537-4546, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35190891

RESUMO

OBJECTIVES: Visualization of the bone distribution is an important prerequisite for MRI-guided high-intensity focused ultrasound (MRI-HIFU) treatment planning of bone metastases. In this context, we evaluated MRI-based synthetic CT (sCT) imaging for the visualization of cortical bone. METHODS: MR and CT images of nine patients with pelvic and femoral metastases were retrospectively analyzed in this study. The metastatic lesions were osteolytic, osteoblastic or mixed. sCT were generated from pre-treatment or treatment MR images using a UNet-like neural network. sCT was qualitatively and quantitatively compared to CT in the bone (pelvis or femur) containing the metastasis and in a region of interest placed on the metastasis itself, through mean absolute difference (MAD), mean difference (MD), Dice similarity coefficient (DSC), and root mean square surface distance (RMSD). RESULTS: The dataset consisted of 3 osteolytic, 4 osteoblastic and 2 mixed metastases. For most patients, the general morphology of the bone was well represented in the sCT images and osteolytic, osteoblastic and mixed lesions could be discriminated. Despite an average timespan between MR and CT acquisitions of 61 days, in bone, the average (± standard deviation) MAD was 116 ± 26 HU, MD - 14 ± 66 HU, DSC 0.85 ± 0.05, and RMSD 2.05 ± 0.48 mm and, in the lesion, MAD was 132 ± 62 HU, MD - 31 ± 106 HU, DSC 0.75 ± 0.2, and RMSD 2.73 ± 2.28 mm. CONCLUSIONS: Synthetic CT images adequately depicted the cancellous and cortical bone distribution in the different lesion types, which shows its potential for MRI-HIFU treatment planning. KEY POINTS: • Synthetic computed tomography was able to depict bone distribution in metastatic lesions. • Synthetic computed tomography images intrinsically aligned with treatment MR images may have the potential to facilitate MR-HIFU treatment planning of bone metastases, by combining visualization of soft tissues and cancellous and cortical bone.


Assuntos
Neoplasias Ósseas , Imageamento por Ressonância Magnética , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/terapia , Estudos de Viabilidade , Fêmur/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Pelve , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
7.
Neurosurg Focus ; 50(1): E13, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33386013

RESUMO

OBJECTIVE: Computed tomography scanning of the lumbar spine incurs a radiation dose ranging from 3.5 mSv to 19.5 mSv as well as relevant costs and is commonly necessary for spinal neuronavigation. Mitigation of the need for treatment-planning CT scans in the presence of MRI facilitated by MRI-based synthetic CT (sCT) would revolutionize navigated lumbar spine surgery. The authors aim to demonstrate, as a proof of concept, the capability of deep learning-based generation of sCT scans from MRI of the lumbar spine in 3 cases and to evaluate the potential of sCT for surgical planning. METHODS: Synthetic CT reconstructions were made using a prototype version of the "BoneMRI" software. This deep learning-based image synthesis method relies on a convolutional neural network trained on paired MRI-CT data. A specific but generally available 4-minute 3D radiofrequency-spoiled T1-weighted multiple gradient echo MRI sequence was supplemented to a 1.5T lumbar spine MRI acquisition protocol. RESULTS: In the 3 presented cases, the prototype sCT method allowed voxel-wise radiodensity estimation from MRI, resulting in qualitatively adequate CT images of the lumbar spine based on visual inspection. Normal as well as pathological structures were reliably visualized. In the first case, in which a spiral CT scan was available as a control, a volume CT dose index (CTDIvol) of 12.9 mGy could thus have been avoided. Pedicle screw trajectories and screw thickness were estimable based on sCT findings. CONCLUSIONS: The evaluated prototype BoneMRI method enables generation of sCT scans from MRI images with only minor changes in the acquisition protocol, with a potential to reduce workflow complexity, radiation exposure, and costs. The quality of the generated CT scans was adequate based on visual inspection and could potentially be used for surgical planning, intraoperative neuronavigation, or for diagnostic purposes in an adjunctive manner.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Tomografia Computadorizada de Feixe Cônico , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Redes Neurais de Computação
8.
Radiother Oncol ; 153: 220-227, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33035623

RESUMO

PURPOSE: To assess the feasibility of magnetic resonance imaging (MRI)-only treatment planning for photon and proton radiotherapy in children with abdominal tumours. MATERIALS AND METHODS: The study was conducted on 66 paediatric patients with Wilms' tumour or neuroblastoma (age 4 ± 2 years) who underwent MR and computed tomography (CT) acquisition on the same day as part of the clinical protocol. MRI intensities were converted to CT Hounsfield units (HU) by means of a UNet-like neural network trained to generate synthetic CT (sCT) from T1- and T2-weighted MR images. The CT-to-sCT image similarity was evaluated by computing the mean error (ME), mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and Dice similarity coefficient (DSC). Synthetic CT dosimetric accuracy was verified against CT-based dose distributions for volumetric-modulated arc therapy (VMAT) and intensity-modulated pencil-beam scanning (PBS). Relative dose differences (Ddiff) in the internal target volume and organs-at-risk were computed and a three-dimensional gamma analysis (2 mm, 2%) was performed. RESULTS: The average ± standard deviation ME was -5 ± 12 HU, MAE was 57 ± 12 HU, PSNR was 30.3 ± 1.6 dB and DSC was 76 ± 8% for bones and 92 ± 9% for lungs. Average Ddiff were <0.5% for both VMAT (range [-2.5; 2.4]%) and PBS (range [-2.7; 3.7]%) dose distributions. The average gamma pass-rates were >99% (range [85; 100]%) for VMAT and >96% (range [87; 100]%) for PBS. CONCLUSION: The deep learning-based model generated accurate sCT from planning T1w- and T2w-MR images. Most dosimetric differences were within clinically acceptable criteria for photon and proton radiotherapy, demonstrating the feasibility of an MRI-only workflow for paediatric patients with abdominal tumours.


Assuntos
Neoplasias Abdominais , Aprendizado Profundo , Terapia com Prótons , Neoplasias Abdominais/diagnóstico por imagem , Neoplasias Abdominais/radioterapia , Criança , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
9.
Acta Orthop ; 91(4): 383-389, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32237929

RESUMO

Background and purpose - The shelf arthroplasty was the regular treatment for residual hip dysplasia before it was substituted by the peri-acetabular osteotomy. Yet, evidence regarding the survival of shelf arthroplasty surgery has never been systematically documented. Hence, we investigated the survival time of the shelf procedure until revision to THA in patients with primary hip dysplasia. Factors that influenced survival and complications were also examined, along with the accuracy of correcting radiographic parameters to characterize dysplasia.Material and methods - The inclusion criteria were studies of human adolescents and adults (> 16 years) with primary or congenital hip dysplasia who were treated with a shelf arthroplasty procedure. Data were extracted concerning patient characteristics, survival time, complications, operative techniques, and accuracy of correcting radiographic parameters.Results - Our inclusion criteria were applicable to 9 studies. The average postoperative Center-Edge Angle and Acetabular Head Index were mostly within target range, but large variations were common. Kaplan-Meier curves (endpoint: conversion to THA) varied between 37% at 20 years' follow-up and 72% at 35 years' follow-up. Clinical failures were commonly associated with pain and radiographic osteoarthritis. Only minor complications were reported with incidences between 17% and 32%.Interpretation - The shelf arthroplasty is capable of restoring normal radiographic hip parameters and is not associated with major complications. When carefully selected on minimal osteoarthritic changes, hip dysplasia patients with a closed triradiate cartilage may benefit from the shelf procedure with satisfactory survival rates. The importance of the shelf arthroplasty in relation to peri-acetabular osteotomies needs to be further (re)explored.


Assuntos
Artroplastia/métodos , Cabeça do Fêmur/cirurgia , Luxação Congênita de Quadril/cirurgia , Acetábulo/cirurgia , Adolescente , Adulto , Humanos , Resultado do Tratamento , Adulto Jovem
10.
Phys Med Biol ; 64(18): 185001, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344696

RESUMO

In this work, we present a new method for visualization of fiducial markers (FMs) in the prostate for MRI-only radiotherapy with a positive contrast directly at the MR console. The method is based on high bandwidth phase-cycled balanced steady-state free precession (bSSFP) sequence, which is available on many clinical scanners, does not require any additional post-processing or software, and has a higher signal-to-noise (SNR) compared to conventional gradient-echo (GE) imaging. Complex phase-cycled bSSFP data is acquired with different RF phase increment settings such that the manifestation of the artifacts around FMs in the acquired complex images is different for each dynamic acquisition and depends on the RF phase increment used. First, we performed numerical simulations to investigate the complex-valued phase-cycled bSSFP signal in the presence of a gold FM, and to investigate the relation of the true physical location of the FM with the geometrical manifestation of the artifacts. Next, to validate the simulations, we performed phantoms and in vivo studies and compared the experimentally obtained artifacts with those predicted in simulations. The accuracy of the method was assessed by comparing the distances between the FM's centers and the center of mass of FMs system measured using phase-cycled bSSFP MR images and using reference CT (or MRI-only) images. The results show accurate (within 1 mm) matching of FMs localization between CT and MR images on five patients, proving the feasibility of in vivo FMs detection on MR images only. The FMs show a positive contrast with respect to the prostate background on real/imaginary phase-cycled bSSFP images, which was confirmed by simulations. The proposed method facilitates robust FMs visualization with positive contrast directly at the MR console, allowing RT technicians to obtain immediate feedback on the anticipated feasibility of accurate FMs localization while the patient is being scanned.


Assuntos
Marcadores Fiduciais , Ouro , Imageamento por Ressonância Magnética/normas , Próstata/diagnóstico por imagem , Radioterapia Guiada por Imagem/normas , Artefatos , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Imagens de Fantasmas , Próstata/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Tomografia Computadorizada por Raios X
11.
Med Phys ; 46(9): 4095-4104, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31206701

RESUMO

PURPOSE: To develop and evaluate a patch-based convolutional neural network (CNN) to generate synthetic computed tomography (sCT) images for magnetic resonance (MR)-only workflow for radiotherapy of head and neck tumors. A patch-based deep learning method was chosen to improve robustness to abnormal anatomies caused by large tumors, surgical excisions, or dental artifacts. In this study, we evaluate whether the generated sCT images enable accurate MR-based dose calculations in the head and neck region. METHODS: We conducted a retrospective study on 34 patients with head and neck cancer who underwent both CT and MR imaging for radiotherapy treatment planning. To generate the sCTs, a large field-of-view T2-weighted Turbo Spin Echo MR sequence was used from the clinical protocol for multiple types of head and neck tumors. To align images as well as possible on a voxel-wise level, CT scans were nonrigidly registered to the MR (CTreg ). The CNN was based on a U-net architecture and consisted of 14 layers with 3 × 3 × 3 filters. Patches of 48 × 48 × 48 were randomly extracted and fed into the training. sCTs were created for all patients using threefold cross validation. For each patient, the clinical CT-based treatment plan was recalculated on sCT using Monaco TPS (Elekta). We evaluated mean absolute error (MAE) and mean error (ME) within the body contours and dice scores in air and bone mask. Also, dose differences and gamma pass rates between CT- and sCT-based plans inside the body contours were calculated. RESULTS: sCT generation took 4 min per patient. The MAE over the patient population of the sCT within the intersection of body contours was 75 ± 9 Hounsfield Units (HU) (±1 SD), and the ME was 9 ± 11 HU. Dice scores of the air and bone masks (CTreg vs sCT) were 0.79 ± 0.08 and 0.70 ± 0.07, respectively. Dosimetric analysis showed mean deviations of -0.03% ± 0.05% for dose within the body contours and -0.07% ± 0.22% inside the >90% dose volume. Dental artifacts obscuring the CT could be circumvented in the sCT by the CNN-based approach in combination with Turbo Spin Echo (TSE) magnetic resonance imaging (MRI) sequence that typically is less prone to susceptibility artifacts. CONCLUSIONS: The presented CNN generated sCTs from conventional MR images without adding scan time to the acquisition. Dosimetric evaluation suggests that dose calculations performed on the sCTs are accurate, and can therefore be used for MR-only radiotherapy treatment planning of the head and neck.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Humanos , Imageamento por Ressonância Magnética , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada
12.
Phys Med Biol ; 64(9): 095006, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30947159

RESUMO

For the purpose of magnetic resonance imaging (MRI) guidance of prostate high-dose-rate (HDR) brachytherapy, this paper presents a study on the potential of clinically relevant MRI sequences to facilitate tracking or localization of brachytherapy devices (HDR source/titanium needle), and which could simultaneously be used to visualize the anatomy. The tracking or localization involves simulation of the MRI artifact in combination with a template matching algorithm. Simulations of the MRI artifacts induced by an HDR brachytherapy source and a titanium needle were implemented for four types of sequences: spoiled gradient echo, spin echo, balanced steady-state free precession (bSSFP) and bSSFP with spectral attenuated inversion recovery (SPAIR) fat suppression. A phantom study was conducted in which mentioned sequences (in 2D) as well as the volumetric MRI sequences of the current clinical scan protocol were applied to obtain the induced MRI artifacts for an HDR source and a titanium needle. Localization of the objects was performed by a phase correlation based template matching algorithm. The simulated images demonstrated high correspondences with the acquired MR images, and allowed localization of the objects. A comparison between the object positions obtained for all applied MRI sequences showed deviations (from the average position) of 0.2-0.3 mm, proving that all MRI sequences were suitable for localization of the objects, irrespective of their 2D or volumetric nature. This study demonstrated that the MRI artifact induced by an HDR source or a titanium needle could be simulated for the four investigated types of MRI sequences (spoiled gradient echo, spin echo, bSSFP and bSSFP-SPAIR), valuable for real-time object localization in clinical practice. This leads to more flexibility in the choice of MRI sequences for guidance of HDR brachytherapy, as they are suitable for both object localization and anatomy visualization.


Assuntos
Artefatos , Braquiterapia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem , Algoritmos , Humanos , Masculino , Imagens de Fantasmas
13.
Magn Reson Med ; 81(3): 2038-2051, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30346055

RESUMO

PURPOSE: To derive a generic approach for accurate localization and characterization of susceptibility markers in MRI, compatible with many common types of pulse sequences, sampling trajectories, and acceleration methods. THEORY AND METHODS: A susceptibility marker's dipolar phase evolution creates 3 saddles in the phase gradient of the spatial encoding, for each sampled data point in k-space. The signal originating from these saddles can be focused at the location of the marker to create positive contrast. The required phase shift can be calculated from the scan parameters and the marker properties, providing a marker detection algorithm generic for different scan types. The method was validated numerically and experimentally for a broad range of spherical susceptibility markers (0.3 < radius < 1.6 mm, 10 < |∆χ| < 3300 ppm), under various conditions. RESULTS: For all numerical and experimental phantoms, the average localization error was below one third of the voxel size, whereas the average error in magnetic strength quantification was 7%. The experiments included different pulse sequences (gradient echo, spin echo [SE], and free induction decay scans), sampling strategies (Cartesian, radial), and acceleration methods (echo planar imaging EPI, turbo SE). CONCLUSION: Spherical markers can be identified from their phase saddles, enabling clear visualization, precise localization, and accurate quantification of their magnetic strength, in a wide range of clinically relevant pulse sequences and sampling strategies.


Assuntos
Braquiterapia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Animais , Meios de Contraste , Modelos Teóricos , Distribuição Normal , Imagens de Fantasmas , Software , Suínos
14.
Int J Radiat Oncol Biol Phys ; 102(4): 801-812, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30108005

RESUMO

PURPOSE: This work aims to facilitate a fast magnetic resonance (MR)-only workflow for radiation therapy of intracranial tumors. Here, we evaluate whether synthetic computed tomography (sCT) images generated with a dilated convolutional neural network (CNN) enable accurate MR-based dose calculations in the brain. METHODS AND MATERIALS: We conducted a retrospective study of 52 patients with brain tumors who underwent both computed tomography (CT) and MR imaging for radiation therapy treatment planning. To generate the sCTs, a T1-weighted gradient echo MR sequence was selected from the clinical protocol for multiple types of brain tumors. sCTs were created for all 52 patients with a dilated CNN using 2-fold cross validation; in each fold, 26 patients were used for training and the remaining 26 patients were used for evaluation. For each patient, the clinical CT-based treatment plan was recalculated on sCT. We calculated dose differences and gamma pass rates between CT- and sCT-based plans inside body and planning target volume. Geometric fidelity of the sCT and differences in beam depth and equivalent path length were assessed between both treatment plans. RESULTS: sCT generation took 1 minute per patient. Over the patient population, the mean absolute error of the sCT within the intersection of body contours was 67 ± 11 HU (±1 standard deviation [SD], range: 51-117 HU), and the mean error was 13 ± 9 HU (±1 SD, range: -2 to 38 HU). Dosimetric analysis showed mean deviations of 0.00% ± 0.02% (±1 SD, range: -0.05 to 0.03) for dose within the body contours and -0.13% ± 0.39% (±1 SD, range: -1.43 to 0.80) inside the planning target volume. Mean γ1mm/1% was 98.8% ± 2.2% for doses >50% of the prescribed dose. CONCLUSIONS: The presented dilated CNN generated sCTs from conventional MR images without adding scan time to the acquisition. Dosimetric evaluation suggests that dose calculations performed on the sCTs are accurate and can therefore be used for MR-only intracranial radiation therapy treatment planning.


Assuntos
Neoplasias Encefálicas/radioterapia , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Dosagem Radioterapêutica , Estudos Retrospectivos
15.
Phys Med Biol ; 63(18): 185001, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30109989

RESUMO

To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within minutes. This work aims at assessing whether an existing deep learning network can rapidly generate sCT images for accurate MR-based dose calculations in the entire pelvis. A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients' simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate cancer patients. The trained network was tested on the remaining patients to generate sCT images. For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume histogram (DVH) analysis. The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less than ±2.5% from the corresponding points on CT. Results suggest that accurate MR-based dose calculation using sCT images generated with a cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was sufficiently fast for integration in an MR-guided radiotherapy workflow.


Assuntos
Imageamento por Ressonância Magnética/métodos , Pelve/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Neoplasias do Colo do Útero/radioterapia
16.
Int J Radiat Oncol Biol Phys ; 102(4): 960-968, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29891205

RESUMO

PURPOSE: For the purpose of magnetic resonance imaging (MRI)-guided high-dose-rate (HDR) brachytherapy, a prototype magnetic resonance (MR) conditional afterloader was developed. This study demonstrates the development and testing of the prototype, while operating simultaneously with MRI. In combination with an MR-based method for HDR source localization, this development enables treatment verification of HDR brachytherapy. Additionally, this allows a direct reconstruction of the source dwell positions after catheter insertion (when using a dummy source) and introduction of a clinical workflow where the patient remains in the same position during dwell position reconstruction, treatment planning and irradiation. METHODS AND MATERIALS: A prototype MR conditional afterloader was developed by providing radiofrequency (RF) shielding and a plastic source cable containing a dummy source. Simultaneous functioning of the afterloader and MRI acquisition was tested in an experimental setting where the afterloader was placed next to the scanner and programmed to send the source to predefined positions within a phantom, while acquiring MR images. The HDR source positions were determined using MR artifact simulation and matching of the MR images to the simulated artifact. Additionally, the impact of the presence and use of the afterloader on the MRI performance was investigated by assessment of RF interference, signal-to-noise ratio (SNR), and B0 field homogeneity. RESULTS: The experiments demonstrated that the prototype MR conditional afterloader and the MRI scanner fully functioned while operating simultaneously, without influencing the other system. The step sizes between the source positions obtained from the MR images corresponded with the afterloader settings. Besides, the MRI performance tests demonstrated no deterioration due to the presence or functioning of the afterloader next to the scanner. CONCLUSIONS: This research has demonstrated the feasibility of simultaneous MR acquisition and employment of an MR conditional afterloader. This development enables real-time HDR source localization for treatment verification of MRI-guided HDR brachytherapy using an MR conditional afterloader.


Assuntos
Braquiterapia/métodos , Imageamento por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Humanos , Dosagem Radioterapêutica , Razão Sinal-Ruído
17.
Radiat Oncol ; 13(1): 105, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871656

RESUMO

BACKGROUND: The use of intraprostatic gold fiducial markers (FMs) ensures highly accurate and precise image-guided radiation therapy for patients diagnosed with prostate cancer thanks to the ease of localising FMs on photon-based imaging, like Computed Tomography (CT) images. Recently, Magnetic Resonance (MR)-only radiotherapy has been proposed to simplify the workflow and reduce possible systematic uncertainties. A critical, determining factor in the accuracy of such an MR-only simulation will be accurate FM localisation using solely MR images. PURPOSE: The aim of this study is to evaluate the performances of manual MR-based FM localisation within a clinical environment. METHODS: We designed a study in which 5 clinically involved radiation therapy technicians (RTTs) independently localised the gold FMs implanted in 16 prostate cancer patients in two scenarios: employing a single MR sequence or a combination of sequences. Inter-observer precision and accuracy were assessed for the two scenarios for localisation in terms of 95% limit of agreement on single FMs (LoA)/ centre of mass (LoA CM) and inter-marker distances (IDs), respectively. RESULTS: The number of precisely located FMs (LoA <2 mm) increased from 38/48 to 45/48 FMs when localisation was performed using multiple sequences instead of single one. When performing localisation on multiple sequences, imprecise localisation of the FMs (3/48 FMs) occurred for 1/3 implanted FMs in three different patients. In terms of precision, we obtained LoA CM within 0.25 mm in all directions over the precisely located FMs. In terms of accuracy, IDs difference of manual MR-based localisation versus CT-based localisation was on average (±1 STD) 0.6 ±0.6 mm. CONCLUSIONS: For both the investigated scenarios, the results indicate that when FM classification was correct, the precision and accuracy are high and comparable to CT-based FM localisation. We found that use of multiple sequences led to better localisation performances compared with the use of single sequence. However, we observed that, due to the presence of calcification and motion, the risk of mislocated patient positioning is still too high to allow the sole use of manual FM localisation. Finally, strategies to possibly overcome the current challenges were proposed.


Assuntos
Marcadores Fiduciais , Ouro , Imageamento por Ressonância Magnética , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Posicionamento do Paciente , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
18.
Phys Imaging Radiat Oncol ; 7: 58-64, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33458406

RESUMO

BACKGROUND AND PURPOSE: Synthetic computed tomography (sCT) images enable magnetic resonance (MR)-based dose calculations. This work investigated whether a commercially available sCT generation solution was suitable for accurate dose calculations and position verification on patients with rectal cancer. MATERIAL AND METHODS: For twenty rectal cancer patients computed tomography (CT) images were rigidly registered to sCT images. Clinical volumetric modulated arc therapy plans were recalculated on registered CT and sCT images. Dose deviations were determined through gamma and voxelwise analysis. The impact on position verification was investigated by identifying differences in translations and rotation between cone-beam CT (CBCT) to CT and CBCT to sCT registrations. RESULTS: Across twenty patients, within a threshold of 90% of the prescription dose, a gamma analysis (2%, 2 mm) mean pass rate of 95.2 ±â€¯4.0% (±1 σ ) and mean dose deviation of -0.3 ±â€¯0.2% of prescription dose were obtained. The mean difference of translations and rotations over ten patients (76 CBCTs) was <1 mm and <0.5° in all directions. In the sole posterior-anterior direction a mean systematic shift of 0.7 ±â€¯0.6 mm was found. CONCLUSIONS: Accurate MR-based dose calculations using a commercial sCT generation method were clinically feasible for treatment of rectal cancer patients. The accuracy of position verification was clinically acceptable. However, before clinical implementation future investigations will be performed to determine the origin of the systematic shift.

19.
Phys Med Biol ; 62(24): 9159-9176, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29076458

RESUMO

A magnetic resonance (MR)-only radiotherapy workflow can reduce cost, radiation exposure and uncertainties introduced by CT-MRI registration. A crucial prerequisite is generating the so called pseudo-CT (pCT) images for accurate dose calculation and planning. Many pCT generation methods have been proposed in the scope of photon radiotherapy. This work aims at verifying for the first time whether a commercially available photon-oriented pCT generation method can be employed for accurate intensity-modulated proton therapy (IMPT) dose calculation. A retrospective study was conducted on ten prostate cancer patients. For pCT generation from MR images, a commercial solution for creating bulk-assigned pCTs, called MR for Attenuation Correction (MRCAT), was employed. The assigned pseudo-Hounsfield Unit (HU) values were adapted to yield an increased agreement to the reference CT in terms of proton range. Internal air cavities were copied from the CT to minimise inter-scan differences. CT- and MRCAT-based dose calculations for opposing beam IMPT plans were compared by gamma analysis and evaluation of clinically relevant target and organ at risk dose volume histogram (DVH) parameters. The proton range in beam's eye view (BEV) was compared using single field uniform dose (SFUD) plans. On average, a [Formula: see text] mm) gamma pass rate of 98.4% was obtained using a [Formula: see text] dose threshold after adaptation of the pseudo-HU values. Mean differences between CT- and MRCAT-based dose in the DVH parameters were below 1 Gy ([Formula: see text]). The median proton range difference was [Formula: see text] mm, with on average 96% of all BEV dose profiles showing a range agreement better than 3 mm. Results suggest that accurate MR-based proton dose calculation using an automatic commercial bulk-assignment pCT generation method, originally designed for photon radiotherapy, is feasible following adaptation of the assigned pseudo-HU values.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Terapia com Prótons/efeitos adversos , Exposição à Radiação , Dosagem Radioterapêutica , Estudos Retrospectivos , Incerteza
20.
Med Phys ; 44(10): 5051-5060, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28777451

RESUMO

PURPOSE: An MR-only postimplant dosimetry workflow for low dose rate (LDR) brachytherapy could reduce patient burden, improve accuracy, and improve cost efficiency. However, localization of brachytherapy seeds on MRI scans remains a major challenge for this type of workflow. In this study, we propose and validate an MR-only seed localization method and identify remaining challenges. METHODS AND MATERIALS: The localization method was based on template matching of simulations of complex-valued imaging artifacts around metal brachytherapy seeds. The method was applied to MRI scans of 25 prostate cancer patients who underwent LDR brachytherapy and for whom postimplant dosimetry was performed after 4 weeks. The seed locations found with the MR-only method were validated against the seed locations found on CT. The circumstances in which detection errors were made were classified to gain an insight in the nature of the errors. RESULTS: A total of 1490 of 1557 (96%) seeds were correctly detected, while 67 false-positive errors were made. The correctly detected seed locations had a high spatial accuracy with an average error of 0.8 mm compared with CT. A majority of the false positives occurred near other seeds. Most false negatives were found in either stranded configurations without spacers or near other seeds. CONCLUSIONS: The low detection error rate and high localization accuracy obtained by the complex-valued template matching approach are promising for future clinical application of MR-only dosimetry. The most important remaining challenge is robustness with regard to configurations of multiple seeds in close vicinity, such as in strands of seeds without spacers. This issue could potentially be resolved by simulating specific configurations of multiple seeds or by constraining the treatment planning to avoid these configurations, which could make the proposed method competitive with CT-based seed localization.


Assuntos
Braquiterapia/métodos , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Humanos , Masculino , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA