Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Med Invest ; 69(3.4): 173-179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36244766

RESUMO

Phosphate (Pi)-containing food additives are used in several forms. Polyphosphate (PPi) salt has more harmful effects than monophosphate (MPi) salt on bone physiology and renal function. This study aimed to analyze the levels of parathyroid hormone PTH and fibroblast growth factor 23 (FGF23) and the expression of renal / intestinal Pi transport-related molecules in mice fed with an MPi or PPi diet. There were no significant differences in plasma Pi concentration and fecal Pi excretion levels between mice fed with the high-MPi and PPi diet. However, more severe tubular dilatation, interstitial fibrosis, and calcification were observed in the kidneys of mice fed with the high PPi diet versus the MPi diet. Furthermore, there was a significant increase in serum FGF23 levels and a decrease in renal phosphate transporter protein expression in mice fed with the PPi diet versus the MPi diet. Furthermore, the high MPi diet was associated with significantly suppressed expression and activity of intestinal alkaline phosphatase protein. In summary, PPi has a more severe effect on renal damage than MPi, as well as induces more FGF23 secretion. Excess FGF23 may be more involved in inflammation, fibrosis, and calcification in the kidney. J. Med. Invest. 69 : 173-179, August, 2022.


Assuntos
Fosfatase Alcalina , Polifosfatos , Animais , Camundongos , Fosfatase Alcalina/metabolismo , Dieta , Fatores de Crescimento de Fibroblastos , Fibrose , Aditivos Alimentares/metabolismo , Rim/metabolismo , Hormônio Paratireóideo/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Polifosfatos/metabolismo
2.
Nephrol Dial Transplant ; 36(1): 68-75, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32879980

RESUMO

BACKGROUND: Phosphate is absorbed in the small intestine via passive flow and active transport.NaPi-IIb, a type II sodium-dependent phosphate transporter, is considered to mediate active phosphate transport in rodents. To study the regulation of intestinal phosphate transport in chronic kidney disease (CKD), we analyzed the expression levels of NaPi-IIb, pituitary-specific transcription factor 1 (PiT-1) and PiT-2 and the kinetics of intestinal phosphate transport using two CKD models. METHODS: CKD was induced in rats via adenine orThy1 antibody injection. Phosphate uptake by intestinal brush border membrane vesicles (BBMV) and the messenger RNA (mRNA) expression of NaPi-IIb, PiT-1 and PiT-2 were analyzed. The protein expression level of NaPi-IIb was measured by mass spectrometry (e.g. liquid chromatography tandem mass spectrometry). RESULTS: In normal rats, phosphate uptake into BBMV consisted of a single saturable component and its Michaelis constant (Km) was comparable to that of NaPi-IIb. The maximum velocity (Vmax) correlated with mRNA and protein levels of NaPi-IIb. In the CKD models, intestinal phosphate uptake consisted of two saturable components. The Vmax of the higher-affinity transport, which is thought to be responsible for NaPi-IIb, significantly decreased and the decrease correlated with reduced NaPi-IIb expression. The Km of the lower-affinity transport was comparable to that of PiT-1 and -2. PiT-1 mRNA expression was much higher than that of PiT-2, suggesting that PiT-1 was mostly responsible for phosphate transport. CONCLUSIONS: This study suggests that the contribution of NaPi-IIb to intestinal phosphate absorption dramatically decreases in rats with CKD and that a low-affinity alternative to NaPi-IIb, in particular PiT-1, is upregulated in a compensatory manner in CKD.


Assuntos
Intestinos/fisiologia , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Sódio/metabolismo , Adenina/toxicidade , Animais , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/classificação , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismo
3.
Commun Biol ; 3(1): 575, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060834

RESUMO

Although disturbed phosphate metabolism frequently accompanies chronic kidney disease (CKD), its causal role in CKD progression remains unclear. It is also not fully understood how excess salt induces organ damage. We here show that urinary phosphate-containing nanoparticles promote kidney injury in salt-sensitive hypertension. In Dahl salt-sensitive rats, salt loading resulted in a significant increase in urinary phosphate excretion without altering serum phosphate levels. An intestinal phosphate binder sucroferric oxyhydroxide attenuated renal inflammation and proteinuria in this model, along with the suppression of phosphaturia. Using cultured proximal tubule cells, we confirmed direct pathogenic roles of phosphate-containing nanoparticles in renal tubules. Finally, transcriptome analysis revealed a potential role of complement C1q in renal inflammation associated with altered phosphate metabolism. These data demonstrate that increased phosphate excretion promotes renal inflammation in salt-sensitive hypertension and suggest a role of disturbed phosphate metabolism in the pathophysiology of hypertensive kidney disease and high salt-induced kidney injury.


Assuntos
Hipertensão Renal/etiologia , Hipertensão Renal/urina , Nanopartículas , Nefrite/etiologia , Nefrite/urina , Fosfatos/urina , Animais , Biomarcadores , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glomerulonefrite/diagnóstico , Glomerulonefrite/etiologia , Glomerulonefrite/urina , Hipertensão Renal/diagnóstico , Hipertensão Renal/metabolismo , Imuno-Histoquímica , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Modelos Biológicos , Nanopartículas/química , Nefrite/diagnóstico , Nefrite/metabolismo , Fosfatos/sangue , Fosfatos/química , Ratos , Ratos Endogâmicos Dahl , Transcriptoma , Urinálise
4.
J Nutr Sci Vitaminol (Tokyo) ; 61 Suppl: S119-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26598821

RESUMO

Inorganic phosphate (Pi) is an essential compound for several biologic functions. Pi levels outside the normal range, however, contribute to several pathological processes. Hypophosphatemia leads to bone abnormalities, such as rickets/osteomalacia. Hyperphosphatemia contributes to vascular calcification in patients with chronic kidney disease and hemodialysis patients and is independently associated with cardiac mortality.Pi homeostasis is regulated by the coordinated function of renal and intestinal sodium-dependent phosphate (NaPi) transporters with dietary Pi, parathyroid hormone, 1,25-dihydroxyvitamin D3, and fibroblast growth factor 23. The type II NaPi transporter/SLC34 family, with three members identified to date, is mainly responsible for Pi homeostasis in the body. SLC34A1 and SCL34A3 are predominantly expressed in the kidney, whereas SLC34A2 is expressed in the small intestine. The role of each SLC34 in the body was recently established by studies of gene-targeted mice. Mutation of SLC34A1 causes Fanconi syndrome and mutation of SLC34A3 causes autosomal recessive hereditary hypophosphatemic rickets with hypercalciuria. SLC34A2 is thought to be a major intestinal NaPi transporter and mutation of SLC34A2 causes pulmonary alveolar microlithiasis. A detailed understanding of Pi regulation in the body is important toward maintaining health.


Assuntos
Homeostase , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Animais , Doenças Ósseas/etiologia , Humanos , Nefropatias/etiologia , Pneumopatias/etiologia , Sódio/metabolismo
5.
Toxicol Sci ; 139(2): 301-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24614234

RESUMO

Itai-itai disease is thought to be the result of chronic cadmium (Cd) intoxication. Renal proximal tubules are a major target of Cd toxicity. The whole mechanism of the adverse effects of Cd remains unresolved, especially how renal damage is related to the development of bone lesions. Fibroblast growth factor 23 (FGF23) is a bone-derived phosphaturic factor that regulates vitamin D and inorganic phosphate metabolism in the kidney. To clarify the role of FGF23 on Cd toxicity, we investigated the mechanisms of Cd-induced FGF23 production in the bone. Cd injection into mice significantly increased plasma FGF23 concentrations, but did not change FGF23 mRNA expression in bone. GalNAc-T3 is involved in secreting intact FGF23. To determine potential roles of GalNAc-T3 in Cd-induced FGF23 production, we examined the effect of Cd on GalNAc-T3 mRNA expression in vivo and in vitro. GalNAc-T3 gene expression was significantly increased in the bones of Cd-injected mice. Cd also enhanced the expression of GalNAc-T3 in cultured osteosarcoma UMR106 cells and primary osteocytes. Cd activated aryl hydrocarbon receptors (AhR) and AhR were required for GalNAc-T3 gene expression induced by Cd. In addition, Cd-dependent FGF23 production was completely inhibited by an AhR antagonist. AhR siRNA markedly suppressed the stimulation of transcriptional activity by Cd. Furthermore, Cd induced AhR activation via phosphorylation of Ser-68 by p38 kinase in the nuclear export signal of AhR. Thus, Cd stimulated GalNAc-T3 gene transcription via enhanced AhR binding to the GalNAc-T3 promoter. These findings suggest that the Cd-induced increase in GalNAc-T3 suppresses proteolytic processing of FGF23 and increases serum FGF23 concentrations.


Assuntos
Cloreto de Cádmio/toxicidade , Fêmur/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , N-Acetilgalactosaminiltransferases/genética , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Feminino , Fêmur/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fosforilação , Receptores de Hidrocarboneto Arílico/metabolismo , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
6.
Am J Physiol Renal Physiol ; 306(7): F744-50, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24500689

RESUMO

The type IIa sodium-dependent phosphate cotransporter (Npt2a) plays a critical role in reabsorption of inorganic phosphate (Pi) by renal proximal tubular cells. Pi abnormalities during early stages of sepsis have been reported, but the mechanisms regulating Pi homeostasis during acute inflammation are poorly understood. We examined the regulation of Pi metabolism and renal Npt2a expression during lipopolysaccharide (LPS)-induced inflammation in mice. Dose-response and time-course studies with LPS showed significant increases of plasma Pi and intact parathyroid hormone (iPTH) levels and renal Pi excretion, while renal calcium excretion was significantly decreased. There was no difference in plasma 1,25-dihydroxyvitamin D levels, but the induction of plasma intact fibroblast growth factor 23 levels peaked 3 h after LPS treatment. Western blotting, immunostaining, and quantitative real-time PCR showed that LPS administration significantly decreased Npt2a protein expression in the brush border membrane (BBM) 3 h after injection, but there was no change in renal Npt2a mRNA levels. Moreover, tumor necrosis factor-α injection also increased plasma iPTH and decreased renal BBM Npt2a expression. Importantly, we revealed that parathyroidectomized rats had impaired renal Pi excretion and BBM Npt2a expression in response to LPS. These results suggest that the downregulation of Npt2a expression in renal BBM through induction of plasma iPTH levels alter Pi homeostasis during LPS-induced acute inflammation.


Assuntos
Inflamação/metabolismo , Rim/metabolismo , Lipopolissacarídeos , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Doença Aguda , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Inflamação/sangue , Inflamação/induzido quimicamente , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microvilosidades/metabolismo , Hormônio Paratireóideo/sangue , Paratireoidectomia , Fosfatos/sangue , Fosfatos/urina , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Fatores de Tempo , Fator de Necrose Tumoral alfa/administração & dosagem , Vitamina D/análogos & derivados , Vitamina D/sangue
7.
Clin Calcium ; 23(10): 1445-50, 2013 Oct.
Artigo em Japonês | MEDLINE | ID: mdl-24076642

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) , an autosomal recessive disorder first identified in a large Bedouin tribe, is characterized by hypophosphatemia secondary to renal inorganic phosphate (Pi) wasting, resulting in increased serum1,25-dihydroxyvitamin D3 concentrations with associated intestinal calcium hyperabsorption, hypercalciuria, rickets, and osteomalacia. Recent studies identified several mutations in the NaPi-2c/NPT2c transporter gene (SLC34A3) as the cause of HHRH. The fact that HHRH is caused by NaPi-2c loss-of-function mutations is compatible with the HHRH phenotype and the prevailing view of renal Pi regulation. The NaPi-2c mutants in HHRH show defective processing and stability.


Assuntos
Raquitismo Hipofosfatêmico/genética , Raquitismo/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Humanos , Hipercalciúria/genética , Rim/metabolismo , Mutação/genética
8.
J Med Invest ; 60(1-2): 27-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23614908

RESUMO

Type IIa sodium-dependent phosphate transporter (NaPi-IIa) is responsible for renal phosphate reabsorption and maintenance of systemic phosphate homeostasis in mammals. Macromolecular complex formation of NaPi-IIa with sodium-proton exchanger related factor-1 (NHERF-1) and ezrin is important for apical membrane localization in the proximal tubular cells. Here, we investigated the interactions of the ezrin phosphomimetic mutation of serine to aspartic acid at 249 with NHERF-1 and the inhibition of apical membrane localization of NaPi-IIa. In vitro phosphorylation analysis revealed that serine 249 of human ezrin serves as a phosphorylation site for protein kinase A. The N-terminal half of ezrin had a dominant negative effect on the phosphate transport activity and inhibited the apical localization of NaPi-IIa in renal proximal tubular cells. We found that the phosphomimetic S249D mutant interfered with the inhibitory effects of the dominant negative mutant on the transport and localization of NaPi-IIa. The S249D mutant also inhibited the interaction with NHERF-1. Therefore, serine 249 of ezrin can play important roles in the regulation of the complex formation and membrane localization of NaPi-IIa.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Túbulos Renais Proximais/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/fisiologia , Actinas/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas do Citoesqueleto/química , Fosfoproteínas/metabolismo , Fosforilação , Serina , Trocadores de Sódio-Hidrogênio/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(15): 5864-9, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23533279

RESUMO

Agonist-induced phosphorylation of the parathyroid hormone (PTH) receptor 1 (PTHR1) regulates receptor signaling in vitro, but the role of this phosphorylation in vivo is uncertain. We investigated this role by injecting "knock-in" mice expressing a phosphorylation-deficient (PD) PTHR1 with PTH ligands and assessing acute biologic responses. Following injection with PTH (1-34), or with a unique, long-acting PTH analog, PD mice, compared with WT mice, exhibited enhanced increases in cAMP levels in the blood, as well as enhanced cAMP production and gene expression responses in bone and kidney tissue. Surprisingly, however, the hallmark hypercalcemic and hypophosphatemic responses were markedly absent in the PD mice, such that paradoxical hypocalcemic and hyperphosphatemic responses were observed, quite strikingly with the long-acting PTH analog. Spot urine analyses revealed a marked defect in the capacity of the PD mice to excrete phosphate, as well as cAMP, into the urine in response to PTH injection. This defect in renal excretion was associated with a severe, PTH-induced impairment in glomerular filtration, as assessed by the rate of FITC-inulin clearance from the blood, which, in turn, was explainable by an overly exuberant systemic hypotensive response. The overall findings demonstrate the importance in vivo of PTH-induced phosphorylation of the PTHR1 in regulating acute ligand responses, and they serve to focus attention on mechanisms that underlie the acute calcemic response to PTH and factors, such as blood phosphate levels, that influence it.


Assuntos
Osso e Ossos/metabolismo , Rim/metabolismo , Hormônio Paratireóideo/análogos & derivados , Receptor Tipo 1 de Hormônio Paratireóideo/fisiologia , Animais , Cálcio/sangue , Cálcio/urina , AMP Cíclico/sangue , AMP Cíclico/urina , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Homeostase , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatos/sangue , Fosfatos/urina , Fosforilação , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Tempo
10.
Endocrinology ; 154(5): 1680-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23515284

RESUMO

PTH increases urinary Pi excretion by reducing expression of two renal cotransporters [NaPi-IIa (Npt2a) and NaPi-IIc (Npt2c)]. In contrast to acute transporter regulation that is cAMP/protein kinase A dependent, long-term effects require phospholipase C (PLC) signaling by the PTH/PTHrP receptor (PPR). To determine whether the latter pathway regulates Pi through Npt2a and/or Npt2c, wild-type mice (Wt) and animals expressing a mutant PPR incapable of PLC activation (DD) were tested in the absence of one (Npt2a(-/-) or Npt2c(-/-)) or both phosphate transporters (2a/2c-dko). PTH infusion for 8 days caused a rapid and persistent decrease in serum Pi in Wt mice, whereas serum Pi in DD mice fell only transiently for the first 2 days. Consistent with these findings, fractional Pi excretion index was increased initially in both animals, but this increase persisted only when the PPR Wt was present. The hypophosphatemic response to PTH infusion was impaired only slightly in PPR Wt/Npt2c(-/-) or DD/Npt2c(-/-) mice. Despite lower baselines, PTH infusion in PPR Wt/Npt2a(-/-) mice decreased serum Pi further, an effect that was attenuated in DD/Npt2a(-/-) mice. Continuous PTH had no effect on serum Pi in 2a/2c-dko mice. PTH administration increased serum 1,25 dihydroxyvitamin D3 levels in Wt and DD mice and increased levels above the elevated baseline with ablation of either but not of both transporters. Continuous PTH elevated serum fibroblast growth factor 23 and blood Ca(2+) equivalently in all groups of mice. Our data indicate that PLC signaling at the PPR contributes to the long-term effect of PTH on Pi homeostasis but not to the regulation of 1,25 dihydroxyvitamin D3, fibroblast growth factor 23, or blood Ca(2+).


Assuntos
Hipofosfatemia/induzido quimicamente , Hormônio Paratireóideo/administração & dosagem , Hormônio Paratireóideo/efeitos adversos , Receptor Tipo 1 de Hormônio Paratireóideo/fisiologia , Transdução de Sinais/fisiologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipofosfatemia/genética , Hipofosfatemia/metabolismo , Infusões Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/fisiologia , Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo
11.
Kidney Int ; 83(1): 41-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22895514

RESUMO

Ezrin cross-links plasma membrane proteins with the actin cytoskeleton. In the kidney, ezrin mainly localizes at the brush border membrane of proximal tubules with the scaffolding protein, Na(+)/H(+) exchanger regulatory factor (NHERF) 1. NHERF1 interacts with the sodium/phosphate cotransporter, Npt2a. Defects in NHERF1 or Npt2a in mice cause hypophosphatemia. Here we studied the physiological role of ezrin in renal phosphate reabsorption using ezrin knockdown mice (Vil2). These mice exhibit hypophosphatemia, hypocalcemia, and osteomalacia. The reduced plasma phosphate concentrations were ascribed to defects in urinary phosphate reabsorption. Immunofluorescence and immunoblotting indicated a marked reduction in renal Npt2a and NHERF1 expression at the apical membrane of proximal tubules in the knockdown mice. On the other hand, urinary loss of calcium was not found in Vil2 mice. Plasma concentrations of 1,25-dihydroxyvitamin D were elevated following reduced plasma phosphate levels, and mRNA of the vitamin D-dependent TRPV6 calcium channel were significantly increased in the duodenum of knockdown mice. Expression of TRPV6 at the apical membrane, however, was significantly decreased. Furthermore, tibial bone mineral density was significantly lower in both the adult and young Vil2 mice. These results suggest that ezrin is required for the regulation of systemic phosphate and calcium homeostasis in vivo.


Assuntos
Cálcio/metabolismo , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/fisiologia , Homeostase/fisiologia , Túbulos Renais Proximais/metabolismo , Fosfatos/metabolismo , Animais , Densidade Óssea/fisiologia , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Duodeno/metabolismo , Feminino , Hipocalcemia/metabolismo , Hipofosfatemia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
12.
Nihon Eiseigaku Zasshi ; 67(4): 464-71, 2012.
Artigo em Japonês | MEDLINE | ID: mdl-23095356

RESUMO

Phosphaturia has been documented following cadmium (Cd) exposure in both humans and experimental animals. Fibroblast growth factor 23 (FGF23) serves as an essential phosphate homeostasis pathway in the bone-kidney axis. In the present study, we investigated the effects of Cd on phosphate (Pi) homeostasis in mice. Following Cd injection into C57BL/6J mice, plasma FGF23 concentration significantly increased. The urinary Pi excretion level was significantly higher in the Cd-injected C57BL/6J mice than in the control group. Plasma Pi concentration decreased only slightly in the Cd-injected mice compared with the control group. No changes were observed in the concentration of the plasma parathyroid hormone and 1,25-dihydroxy vitamin D(3) in both groups of mice. We observed a decrease in phosphate transport activity and also a decrease in the expression level of renal phosphate transporter Npt2c, but not that of Npt2a. Furthermore, we examined the effect of Cd on Npt2c in Npt2a-knockout (KO) mice, which expresses Npt2c as a major NaPi cotransporter. Injecting Cd to Npt2aKO mice induced a significant increase in plasma FGF23 concentration and urinary Pi excretion level. Furthermore, we observed decreases in phosphate transport activity and renal Npt2c expression level in the Cd-injected Npt2a KO mice. The present study suggests that hypophosphatemia induced by Cd may be closely associated with FGF23.


Assuntos
Cádmio/efeitos adversos , Fatores de Crescimento de Fibroblastos/fisiologia , Hipofosfatemia Familiar/etiologia , Fosfatos/metabolismo , Animais , Transporte Biológico/genética , Osso e Ossos/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Homeostase/genética , Humanos , Hipofosfatemia/etiologia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteomalacia/induzido quimicamente , Osteomalacia/etiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo
13.
J Clin Endocrinol Metab ; 97(10): E1978-86, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865906

RESUMO

CONTEXT: Many inherited disorders of calcium and phosphate homeostasis are unexplained at the molecular level. OBJECTIVE: The objective of the study was to identify the molecular basis of phosphate and calcium abnormalities in two unrelated, consanguineous families. PATIENTS: The affected members in family 1 presented with rickets due to profound urinary phosphate-wasting and hypophosphatemic rickets. In the previously reported family 2, patients presented with proximal renal tubulopathy and hypercalciuria yet normal or only mildly increased urinary phosphate excretion. METHODS: Genome-wide linkage scans and direct nucleotide sequence analyses of candidate genes were performed. Transport of glucose and phosphate by glucose transporter 2 (GLUT2) was assessed using Xenopus oocytes. Renal sodium-phosphate cotransporter 2a and 2c (Npt2a and Npt2c) expressions were evaluated in transgenically rescued Glut2-null mice (tgGlut2-/-). RESULTS: In both families, genetic mapping and sequence analysis of candidate genes led to the identification of two novel homozygous mutations (IVS4-2A>G and R124S, respectively) in GLUT2, the gene mutated in Fanconi-Bickel syndrome, a rare disease usually characterized by renal tubulopathy, impaired glucose homeostasis, and hepatomegaly. Xenopus oocytes expressing the [R124S]GLUT2 mutant showed a significant reduction in glucose transport, but neither wild-type nor mutant GLUT2 facilitated phosphate import or export; tgGlut2-/- mice demonstrated a profound reduction of Npt2c expression in the proximal renal tubules. CONCLUSIONS: Homozygous mutations in the facilitative glucose transporter GLUT2, which cause Fanconi-Bickel syndrome, can lead to very different clinical and biochemical findings that are not limited to mild proximal renal tubulopathy but can include significant hypercalciuria and highly variable degrees of urinary phosphate-wasting and hypophosphatemia, possibly because of the impaired proximal tubular expression of Npt2c.


Assuntos
Síndrome de Fanconi/genética , Transportador de Glucose Tipo 2/genética , Hipercalciúria/genética , Hipofosfatemia Familiar/genética , Raquitismo/genética , Adolescente , Sequência de Aminoácidos , Animais , Raquitismo Hipofosfatêmico Familiar , Saúde da Família , Síndrome de Fanconi/metabolismo , Feminino , Genes Recessivos/genética , Variação Genética , Estudo de Associação Genômica Ampla , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 2/metabolismo , Humanos , Hipercalciúria/metabolismo , Hipofosfatemia Familiar/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Oócitos/fisiologia , Linhagem , Raquitismo/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Xenopus laevis
14.
J Biol Chem ; 286(2): 1618-26, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21047792

RESUMO

The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR1) in cells of the renal proximal tubule mediates the reduction in membrane expression of the sodium-dependent P(i) co-transporters, NPT2a and NPT2c, and thus suppresses the re-uptake of P(i) from the filtrate. In most cell types, the liganded PTHR1 activates Gα(S)/adenylyl cyclase/cAMP/PKA (cAMP/PKA) and Gα(q/11)/phospholipase C/phosphatidylinositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/PKC (IP(3)/PKC) signaling pathways, but the relative roles of each pathway in mediating renal regulation P(i) transport remain uncertain. We therefore explored the signaling mechanisms involved in PTH-dependent regulation of NPT2a function using potent, long-acting PTH analogs, M-PTH(1-28) (where M = Ala(1,12), Aib(3), Gln(10), Har(11), Trp(14), and Arg(19)) and its position 1-modified variant, Trp(1)-M-PTH(1-28), designed to be phospholipase C-deficient. In cell-based assays, both M-PTH(1-28) and Trp(1)-M-PTH(1-28) exhibited potent and prolonged cAMP responses, whereas only M-PTH(1-28) was effective in inducing IP(3) and intracellular calcium responses. In opossum kidney cells, a clonal cell line in which the PTHR1 and NPT2a are endogenously expressed, M-PTH(1-28) and Trp(1)-M-PTH(1-28) each induced reductions in (32)P uptake, and these responses persisted for more than 24 h after ligand wash-out, whereas that of PTH(1-34) was terminated by 4 h. When injected into wild-type mice, both M-modified PTH analogs induced prolonged reductions in blood P(i) levels and commensurate reductions in NPT2a expression in the renal brush border membrane. Our findings suggest that the acute down-regulation of NPT2a expression by PTH ligands involves mainly the cAMP/PKA signaling pathway and are thus consistent with the elevated blood P(i) levels seen in pseudohypoparathyroid patients, in whom Gα(s)-mediated signaling in renal proximal tubule cells is defective.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Hormônio Paratireóideo/metabolismo , Pseudo-Hipoparatireoidismo/metabolismo , Transdução de Sinais/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Animais , Células COS , Bovinos , Chlorocebus aethiops , Regulação para Baixo/fisiologia , Humanos , Técnicas In Vitro , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gambás , Osteoblastos/citologia , Osteoblastos/metabolismo , Hormônio Paratireóideo/análogos & derivados , Hormônio Paratireóideo/genética , Fósforo/sangue , Ratos , Sódio/metabolismo
15.
Pflugers Arch ; 461(1): 77-90, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21057807

RESUMO

We analyzed vitamin D receptor (VDR) (-/-) mice fed either a normal diet or a rescue diet. Weanling VDR (-/-) mice had hypophosphatemia and hyperphosphaturia. Renal Na(+)-dependent inorganic phosphate (Pi) cotransport activity was significantly decreased in weanling VDR (-/-) mice. In VDR (+/+) mice, renal Npt2a/Npt2c/PiT-2 protein levels were significantly increased at 21 and 28 days of age compared with that at 1 day of age. Npt2c and PiT-2 protein levels were maximally expressed at 28 days of age. Npt2a protein levels were significantly decreased in mice at 28 days of age compared with 21 and 60 days of age. In VDR (-/-) mice, Npt2a/Npt2c/PiT-2 protein levels were considerably lower than those in age-matched VDR (+/+) mice at 21 and 28 days of age. The reduced Npt2a/Npt2c/PiT-2 protein recovered completely in VDR-null mice fed the rescue diet. Although Pi transport activity and Npt2b were reduced in the proximal intestine in VDR (-/-) mice, Npt2b protein levels were not reduced in the distal intestine in VDR (-/-) mice. The rescue diet did not affect intestinal Npt2b protein levels in VDR (-/-) mice. Thus, reduced intestinal Pi absorption in VDR (-/-) mice does not seem to be the only factor that causes hypophosphatemia; reduced Npt2a, Npt2c, or PiT-2 protein levels during development might also cause hypophosphatemia and rickets in VDR (-/-) mice. Furthermore, dietary intervention completely normalized the expression of the renal phosphate transporters (Npt2a/Npt2c/PiT-2) in VDR (-/-) mice, suggesting that the lack of VDR activity is not the cause of impaired renal phosphate reabsorption.


Assuntos
Dieta , Hipofosfatemia/metabolismo , Receptores de Calcitriol/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Animais , Cálcio/sangue , Raquitismo Hipofosfatêmico Familiar/etiologia , Hipofosfatemia/genética , Rim/fisiopatologia , Camundongos , Camundongos Knockout , Microvilosidades/metabolismo , Fosfatos/sangue , Fosfatos/metabolismo
16.
Am J Physiol Renal Physiol ; 299(1): F243-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20410212

RESUMO

The type IIc Na(+)-dependent phosphate cotransporter (NaPi-IIc) is specifically targeted to, and expressed on, the apical membrane of renal proximal tubular cells and mediates phosphate transport. In the present study, we investigated the signals that determine apical expression of NaPi-IIc with a focus on the role of the N- and the C-terminal tails of mouse NaPi-IIc in renal epithelial cells [opossum kidney (OK) and Madin-Darby canine kidney cells]. Wild-type NaPi-IIc, the cotransporter NaPi-IIa, as well as several IIa-IIc chimeras and deletion mutants, were fused to enhanced green fluorescent protein (EGFP), and their cellular localization was analyzed in polarized renal epithelial cells by confocal microscopy and by cell-surface biotinylation. Fluorescent EGFP-fused NaPi-IIc transporter proteins are correctly expressed in the apical membrane of OK cells. The apical expression of N-terminal deletion mutants (deletion of N-terminal 25, 50, or 69 amino acids) was not affected by truncation. In contrast, C-terminal deletion mutants (deletion of C-terminal 45, 50, or 62 amino acids) did not have correct apical expression. A more detailed mutational analysis indicated that a domain (amino acids WLHSL) in the cytoplasmic C terminus is required for apical expression of NaPi-IIc in renal epithelial cells. We conclude that targeting of NaPi-IIc to the apical cell surface is regulated by a unique amino acid motif in the cytoplasmic C-terminal domain.


Assuntos
Polaridade Celular , Células Epiteliais/metabolismo , Rim/metabolismo , Sinais Direcionadores de Proteínas , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biotinilação , Células CACO-2 , Cães , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Rim/citologia , Células LLC-PK1 , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Gambás , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Suínos , Transfecção
17.
Am J Physiol Renal Physiol ; 298(6): F1341-50, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20357029

RESUMO

In the present study, we evaluated the roles of type II and type III sodium-dependent P(i) cotransporters in fibroblast growth factor 23 (FGF23) activity by administering a vector encoding FGF23 with the R179Q mutation (FGF23M) to wild-type (WT) mice, Npt2a knockout (KO) mice, Npt2c KO mice, and Npt2a(-/-)Npt2c(-/-) mice (DKO mice). In Npt2a KO mice, FGF23M induced severe hypophosphatemia and markedly decreased the levels of Npt2c, type III Na-dependent P(i) transporter (PiT2) protein, and renal Na/P(i) transport activity. In contrast, in Npt2c KO mice, FGF23M decreased plasma phosphate levels comparable to those in FGF23M-injected WT mice. In DKO mice with severe hypophosphatemia, FGF23M administration did not induce an additional increase in urinary phosphate excretion. FGF23 administration significantly decreased intestinal Npt2b protein levels in WT mice but had no effect in Npt2a, Npt2c, and DKO mice, despite marked suppression of plasma 1,25(OH)(2)D(3) levels in all the mutant mice. The main findings were as follow: 1) FGF23-dependent phosphaturic activity in Npt2a KO mice is dependent on renal Npt2c and PiT-2 protein; 2) in DKO mice, renal P(i) reabsorption is not further decreased by FGF23M, but renal vitamin D synthesis is suppressed; and 3) downregulation of intestinal Npt2b may be mediated by a factor(s) other than 1,25(OH)(2)D(3). These findings suggest that Npt2a, Npt2c, and PiT-2 are necessary for the phosphaturic activity of FGF23. Thus complementary regulation of Npt2 family proteins may be involved in systemic P(i) homeostasis.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Hipofosfatemia Familiar/etiologia , Hipofosfatemia/etiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/deficiência , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/deficiência , Animais , Calcitriol/sangue , Cálcio/sangue , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Técnicas de Transferência de Genes , Humanos , Hipofosfatemia/genética , Hipofosfatemia/metabolismo , Hipofosfatemia Familiar/genética , Hipofosfatemia Familiar/metabolismo , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fosfatos/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
18.
J Med Invest ; 57(1-2): 95-108, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20299748

RESUMO

Phosphaturia has been documented following cadmium (Cd) exposure in both humans and experimental animals. The fibroblast growth factor 23 (FGF23)/klotho axis serves as an essential phosphate homeostasis pathway in the bone-kidney axis. In the present study, we investigated the effects of Cd on phosphate (Pi) homeostasis in mice. Following Cd injection into WT mice, plasma FGF23 concentration was significantly increased. Urinary Pi excretion levels were significantly higher in Cd-injected WT mice than in control group. Plasma Pi concentration decreased only slightly compared with control group. No change was observed in plasma parathyroid hormone and 1,25-dihydroxy vitamin D(3) in both group of mice. We observed a decrease in phosphate transport activity and also decrease in expression of renal phosphate transporter SLC34A3 [NaPi-IIc/NPT2c], but not SLC34A1 [NaPi-IIa/NPT2a]. Furthermore, we examined the effect of Cd on Npt2c in Npt2a-knockout (KO) mice which expresses Npt2c as a major NaPi co-transporter. Injecting Cd to Npt2aKO mice induced significant increase in plasma FGF23 concentration and urinary Pi excretion levels. Furthermore, we observed a decrease in phosphate transport activity and renal Npt2c expression in Cd-injected Npt2a KO mice. The present study suggests that hypophosphatemia induced by Cd may be closely associated with the FGF23/klotho axis.


Assuntos
Cádmio/toxicidade , Fatores de Crescimento de Fibroblastos/fisiologia , Hipofosfatemia Familiar/induzido quimicamente , Animais , Proteínas da Matriz Extracelular/genética , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , RNA Mensageiro/análise , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/análise , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/fisiologia
19.
J Med Invest ; 57(1-2): 138-45, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20299753

RESUMO

The "in vivo cryotechnique" (IVCT) is a new method of morphological analysis which has the advantage of freezing tissues in living animals without stopping their blood circulation. The purpose of this study was to investigate the effect of parathyroid hormone (PTH) on renal type II Na-Pi transporters (NaPi-IIa and NaPi-IIc) and "cryobiopsy" (CB) using special cryoforceps as a simple method of the IVCT. The kidney tissues were biopsied at various time points after PTH administration by CB using liquid nitrogen as the cryogen. By hematoxylin-eosin (HE) staining the kidney tissues, well-frozen areas without visible ice crystals were obtained in the tissue surface areas, and the brush border membrane (BBM) of proximal tubules was well preserved at a light microscopic level. Immunohistochemical evaluation showed that PTH downregulated NaPi-IIa and NaPi-IIc at the BBM, being controlled by a different mechanism. In this method, the PTH-induced internalization of NaPi-IIc from microvilli to subapical compartments was not observed in the tissue preparations. NaPi-IIc protein appears to be degraded in microvilli of the proximal tubular cells after the injection of PTH. We suggest that CB using liquid nitrogen is useful to investigate renal type II Na-Pi transporters at the light microscopic level.


Assuntos
Rim/química , Hormônio Paratireóideo/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo II/análise , Animais , Biópsia , Regulação para Baixo , Imuno-Histoquímica , Rim/patologia , Masculino , Ratos , Ratos Wistar
20.
Am J Physiol Renal Physiol ; 297(3): F671-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19570882

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare autosomal recessively inherited disorder, characterized by hypophosphatemia, short stature, rickets and/or osteomalacia, and secondary absorptive hypercalciuria. HHRH is caused by a defect in the sodium-dependent phosphate transporter (NaPi-IIc/Npt2c/NPT2c), which was thought to have only a minor role in renal phosphate (P(i)) reabsorption in adult mice. In fact, mice that are null for Npt2c (Npt2c(-/-)) show no evidence for renal phosphate wasting when maintained on a diet with a normal phosphate content. To obtain insights and the relative importance of Npt2a and Npt2c, we now studied Npt2a(-/-)Npt2c(+/+), Npt2a(+/-)Npt2c(-/-), and Npt2a(-/-)Npt2c(-/-) double-knockout (DKO). DKO mice exhibited severe hypophosphatemia, hypercalciuria, and rickets. These findings are different from those in Npt2a KO mice that show only a mild phosphate and bone phenotype that improve over time and from the findings in Npt2c KO mice that show no apparent abnormality in the regulation of phosphate homeostasis. Because of the nonredundant roles of Npt2a and Npt2c, DKO animals showed a more pronounced reduction in P(i) transport activity in the brush-border membrane of renal tubular cells than that in the mice with the single-gene ablations. A high-P(i) diet after weaning rescued plasma phosphate levels and the bone phenotype in DKO mice. Our findings thus showed in mice that Npt2a and Npt2c have independent roles in the regulation of plasma P(i) and bone mineralization.


Assuntos
Osso e Ossos/metabolismo , Calcificação Fisiológica , Raquitismo Hipofosfatêmico Familiar/metabolismo , Hipercalciúria/metabolismo , Túbulos Renais/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Envelhecimento , Animais , Osso e Ossos/patologia , Calcificação Fisiológica/genética , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/patologia , Raquitismo Hipofosfatêmico Familiar/prevenção & controle , Feminino , Genótipo , Homeostase , Hipercalciúria/genética , Hipercalciúria/patologia , Cálculos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvilosidades/metabolismo , Fenótipo , Fosfatos/sangue , Fosfatos/urina , Fósforo na Dieta/administração & dosagem , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/deficiência , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/deficiência , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA