Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Toxicol Sci ; 43(5): 339-351, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743445

RESUMO

Troglitazone, a member of the thiazolidinedione class of antidiabetic drugs, was withdrawn from the market because it causes severe liver injury. One of the mechanisms for this adverse effect is thought to be mitochondrial toxicity. To investigate the characteristics of troglitazone-induced liver toxicity in more depth, the toxicological effects of troglitazone on hepatocytes and liver mitochondria were investigated using a rat model of type 2 diabetes mellitus (T2DM). Troglitazone was found to increase mitochondrial permeability transition (MPT) in the liver mitochondria of diabetic rats to a greater extent than in control rats, whereas mitochondrial membrane potential and oxidative phosphorylation were not affected. To identify the factors associated with this increase in susceptibility to MPT in diabetic rats, we assessed the oxidative status of the liver mitochondria and found a decrease in mitochondrial glutathione content and an increase in phospholipid peroxidation. Moreover, incorporation of oxidized cardiolipin, a mitochondrion-specific phospholipid, was involved in the troglitazone-induced alteration in susceptibility to MPT. In conclusion, liver mitochondria display disease-associated mitochondrial lipid peroxidation in T2DM, which facilitates the higher susceptibility to troglitazone-induced MPT. Thus, greater susceptibility of liver mitochondria may be a host factor leading to troglitazone-induced hepatotoxicity in T2DM.


Assuntos
Cromanos/toxicidade , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/toxicidade , Peroxidação de Lipídeos , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Tiazolidinedionas/toxicidade , Animais , Cardiolipinas/metabolismo , Cromanos/efeitos adversos , Modelos Animais de Doenças , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/efeitos adversos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Fosfolipídeos/metabolismo , Ratos Zucker , Tiazolidinedionas/efeitos adversos , Troglitazona
2.
Artigo em Inglês | MEDLINE | ID: mdl-24121060

RESUMO

Synaptic dysfunction has recently gained attention for its involvement in mood disorders. Electroconvulsive therapy (ECT) possibly plays a role in synaptic repair. However, the underlying mechanisms remain uncertain. Thrombospondin-1 (TSP-1), a member of the TSP family, is reported to be secreted by astrocytes and to regulate synaptogenesis. We investigated the effects of electroconvulsive seizure (ECS) on the expression of TSPs in the adult rat hippocampus. Single and repeated ECS significantly increased TSP-1 mRNA expression after 2h and returned to sham levels at 24h. Conversely, the TSP-2 and -4 mRNA levels did not change. Only repeated ECS induced TSP-1 proteins. ECS also induced glial fibrillary acidic protein (GFAP) expression. The GFAP expression occurred later than the TSP-1 mRNA expression following single ECS; however, it occurred earlier and was more persistent following repeated ECS. ECS had no effect on the α2δ-1 or neuroligin-1 expressions, both of which are TSP-1 receptors. Furthermore, chronic treatment with antidepressants did not induce the expression of TSP-1 or GFAP. These findings suggest that repeated ECS, but not chronic treatment with antidepressants, induces TSP-1 expression partially via the activation of astrocytes. Therefore, TSP-1 is possibly involved in the synaptogenic effects of ECS.


Assuntos
Eletrochoque/efeitos adversos , Regulação da Expressão Gênica/efeitos da radiação , Hipocampo/metabolismo , Convulsões/patologia , Trombospondina 1/metabolismo , Proteínas ADAM/farmacologia , Proteína ADAMTS1 , Análise de Variância , Animais , Antidepressivos/farmacologia , Desipramina/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Paroxetina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/tratamento farmacológico , Convulsões/etiologia , Trombina/farmacologia , Trombospondina 1/efeitos dos fármacos , Trombospondina 1/genética , Fatores de Tempo
3.
Biopharm Drug Dispos ; 35(3): 173-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24285294

RESUMO

Quercetin-3-rhamnoglucoside (rutin) has a wide spectrum of biochemical and pharmacological activities. Rutin is absorbed mainly in its unmetabolized form. Organic anion transporting polypeptide (OATP) 2B1 is a major uptake transporter in the intestine. Thus, it is important for the prevention of adverse events to understand drug interactions mediated by OATP2B1 in the absorption process. This study assessed the effect of rutin on transport by OATP2B1. Rutin stimulated the uptake of estrone-3-sulfate (E-3-S), taurocholic acid (TCA), cholic acid (CA) and rosuvastatin by OATP2B1, but not p-coumaric acid or ferulic acid. The EC50 of rutin for transport by OATP2B1 was 2.32 µm. The Km value of E-3-S for OATP2B1 in the presence of rutin (9.21 µm) was almost the same as that in the absence of rutin (8.53 µm). On the other hand, the Vmax of E-3-S transport by OATP2B1 in the presence of rutin (270 pmol/mg protein/min) was 1.2-fold higher than that in the absence of rutin (218 pmol/mg protein/min). Moreover, the expression level of OATP2B1 on the cell membrane was increased by treatment with rutin for 5 min without alteration of the total OATP2B1 expression level. Moreover, the increase in the localization of OATP2B1 at the cell surface was detected by the immunocytochemistry. The stimulatory effect of rutin is a little weak but may affect the absorption of OATP2B1 substrates, because rutin is taken daily in foods and its intestinal concentration would reach the stimulatory range of OATP2B1.


Assuntos
Transportadores de Ânions Orgânicos/metabolismo , Rutina/farmacologia , Transporte Biológico/efeitos dos fármacos , Membrana Celular/metabolismo , Interações Medicamentosas , Células HEK293 , Humanos
4.
Drug Metab Pharmacokinet ; 28(3): 178-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22986710

RESUMO

In a clinical setting, changes in pharmacokinetics due to drug-drug interactions can often directly affect the therapeutic safety and efficacy of drugs. Recently, interest has been shown in drug-drug interactions in the intestine. It is now recognized that changes in the functions of drug transporters substantially influence the absorption of administered drugs from the intestine. Amiodarone (AMD) is a potent drug used in the treatment of serious supraventricular and ventricular tachyarrhythmias. Despite its potent pharmacological effects, its wide clinical use is precluded by drug-drug interactions. In this study, we characterized the transporter function between AMD and various compounds in human intestinal model Caco-2 cells. AMD significantly and rapidly increased the uptake of [(3)H]estrone-3-sulfate (E-3-S) for 5 min. The apical-to-basal transport of [(3)H]E-3-S was significantly increased by AMD. The AMD-stimulated [(3)H]E-3-S uptake was inhibited by organic anion transporting polypeptide (OATP) substrates. Caco-2 cells treated with AMD showed increased OATP2B1 expression on the cell surface. AMD also increased the absorption of sulfobromophthalein (BSP), which is a typical organic anion compound, and the expression level of Oatp2b1 at the membrane in in vivo experiments. The results indicate that AMD induces OATP2B1/Oatp2b1 expression at the membrane in the intestine and enhances absorption of organic anion compounds.


Assuntos
Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Estrona/análogos & derivados , Proteínas de Ligação a Ácido Graxo/efeitos dos fármacos , Animais , Células CACO-2 , Interações Medicamentosas , Estrona/farmacocinética , Hormônios Gastrointestinais , Humanos , Microvilosidades/metabolismo , Transportadores de Ânions Orgânicos/biossíntese , Ratos , Sulfobromoftaleína/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA