Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Clin Immunol ; 43(1): 151-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36063261

RESUMO

Pathogenic variants in LRBA, encoding the LPS Responsive Beige-Like Anchor (LRBA) protein, are responsible for recessive, early-onset hypogammaglobulinemia, severe multi-organ autoimmunity, and lymphoproliferation, with increased risk for malignancy. LRBA deficiency has a wide clinical spectrum with variable age of onset and disease severity. Three apparently unrelated patients with LRBA deficiency, of Georgian Jewish descent, were homozygous for LRBA c.6640C > T, p.R2214*, leading to a stop upstream of the LRBA BEACH domain. Despite carrying the same LRBA genotype, the three patients differed in clinical course: the first patient was asymptomatic until age 25 years; the second presented with failure to thrive at age 3 months; and the third presented at age 7 years with immune cytopenias and severe infections. Two of the patients developed malignancies: the first patient was diagnosed with recurrent Hodgkin's disease at age 36 years, and the second patient developed aggressive gastric cancer at age 15 years. Among Georgian Jews, the carrier frequency of the LRBA p.R2214* allele was 1.6% (4 of 236 Georgian Jewish controls). The allele was absent from other populations. Haplotype analysis showed a shared origin of the mutation. These three patients revealed a pathogenic LRBA founder allele in the Georgian Jewish population, support the diverse and complex clinical spectrum of LRBA deficiency, and support the possibility that LRBA deficiency predisposes to malignancy.


Assuntos
Dermatite , Judeus , Humanos , Lactente , Criança , Adulto , Adolescente , Judeus/genética , Alelos , Recidiva Local de Neoplasia/genética , Genótipo , Mutação/genética , Dermatite/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
2.
Am J Med Genet A ; 188(9): 2555-2559, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35775617

RESUMO

Infantile Krabbe disease (OMIM 245200) is a severe, fatal autosomal recessive neurodegenerative disorder that is relatively frequent in two Muslims villages within Jerusalem. After the characterization of the founder mutation, a population carrier screening for Krabbe disease became a component of the Israeli program for the detection and the prevention of birth defects. Between 2010 and 2018, 3366 individuals were tested and among them 247 carriers for Krabbe disease were identified (7.3%). Most of the 21 carrier couples identified that had pregnancies after being informed that they were at risk used preventive measures including termination of pregnancies of affected fetuses. During the study period, eight children affected with Krabbe disease were born in the villages, four to couples not detected though the program. Twenty years after the beginning of the carrier screening program, Krabbe disease remained relatively frequent in the villages. The establishment of a genetic clinic in the villages may allow to improve the carrier screening program while giving individual counseling for the risk to the other genetic diseases existing in the villages.


Assuntos
Leucodistrofia de Células Globoides , Criança , Feminino , Triagem de Portadores Genéticos , Humanos , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/epidemiologia , Leucodistrofia de Células Globoides/genética , Programas de Rastreamento , Gravidez
3.
Mol Genet Genomics ; 297(4): 925-933, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35488049

RESUMO

Complex chromosomal rearrangements (CCRs), a class of structural variants (SVs) involving more than two chromosome breaks, were classically thought to be extremely rare. As advanced technologies become more available, it has become apparent that CCRs are more common than formerly thought, and are a substantial cause of genetic disorders. We attempted a novel approach for solving the mechanism of challenging CCRs, which involve repetitive sequences, by precisely identifying sequence-level changes and their order. Chromosomal microarray (CMA) and FISH analyses were used for interpretation of SVs detected by whole exome sequencing (WES). Breakpoint junctions were analyzed by Nanopore sequencing, a novel long-read whole genome sequencing tool. A large deletion identified by WES, encompassing the FOXF1 enhancer, was the cause of alveolar capillary dysplasia and respiratory insufficiency, resulting in perinatal death. CMA analysis of the newborn's mother revealed two duplications encompassing the deleted region in the proband, raising our hypothesis that the deletion resulted from the mother's CCR. Breakpoint junctions of complex SVs were determined at the nucleotide level using Nanopore long-read sequencing. According to sequencing results of breakpoint junctions, the CCR in the newborn was considered the consequence of at least one double-strand break during meiosis, and reassembly of DNA fragments by intra-chromosomal homologous recombination. Our comprehensive approach, combining cytogenetics and long-read sequencing, enabled delineation of the exact breakpoints in a challenging CCR, and proposal of a mechanism in which it arises. We suggest applying our integrative approach combining technologies for deciphering future challenging CCRs, enabling risk assessment in families.


Assuntos
Aberrações Cromossômicas , Genoma , Cromossomos , Análise Citogenética , Feminino , Genômica , Humanos , Gravidez
4.
Genet Med ; 21(6): 1390-1399, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30449887

RESUMO

PURPOSE: To develop an economical, user-friendly, and accurate all-in-one next-generation sequencing (NGS)-based workflow for single-cell gene variant detection combined with comprehensive chromosome screening in a 24-hour workflow protocol. METHODS: We subjected single lymphoblast cells or blastomere/blastocyst biopsies from four different families to low coverage (0.3×-1.4×) genome sequencing. We combined copy-number variant (CNV) detection and whole-genome haplotype phase prediction via Haploseek, a novel, user-friendly analysis pipeline. We validated haplotype predictions for each sample by comparing with clinical preimplantation genetic diagnosis (PGD) case results or by single-nucleotide polymorphism (SNP) microarray analysis of bulk DNA from each respective lymphoblast culture donor. CNV predictions were validated by established commercial kits for single-cell CNV prediction. RESULTS: Haplotype phasing of the single lymphoblast/embryo biopsy sequencing data was highly concordant with relevant ground truth haplotypes in all samples/biopsies from all four families. In addition, whole-genome copy-number assessments were concordant with the results of a commercial kit. CONCLUSION: Our results demonstrate the establishment of a reliable method for all-in-one molecular and chromosomal diagnosis of single cells. Important features of the Haploseek pipeline include rapid sample processing, rapid sequencing, streamlined analysis, and user-friendly reporting, so as to expedite clinical PGD implementation.


Assuntos
Testes Genéticos/métodos , Haplótipos/genética , Diagnóstico Pré-Implantação/métodos , Aneuploidia , Biópsia , Blastocisto , Cromossomos , Variações do Número de Cópias de DNA/genética , Feminino , Fertilização in vitro , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Gravidez
5.
N Engl J Med ; 379(11): 1042-1049, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30207912

RESUMO

The causes of ovarian dysgenesis remain incompletely understood. Two sisters with XX ovarian dysgenesis carried compound heterozygous truncating mutations in the BRCA2 gene that led to reduced BRCA2 protein levels and an impaired response to DNA damage, which resulted in chromosomal breakage and the failure of RAD51 to be recruited to double-stranded DNA breaks. The sisters also had microcephaly, and one sister was in long-term remission from leukemia, which had been diagnosed when she was 5 years old. Drosophila mutants that were null for an orthologue of BRCA2 were sterile, and gonadal dysgenesis was present in both sexes. These results revealed a new role for BRCA2 and highlight the importance to ovarian development of genes that are critical for recombination during meiosis. (Funded by the Israel Science Foundation and others.).


Assuntos
Proteína BRCA2/deficiência , Quebra Cromossômica , Reparo do DNA , Genes BRCA2 , Disgenesia Gonadal/genética , Ovário/crescimento & desenvolvimento , Adolescente , Animais , Proteína BRCA2/fisiologia , Quebra Cromossômica/efeitos dos fármacos , Análise Mutacional de DNA , Drosophila melanogaster , Feminino , Humanos , Hipogonadismo/genética , Masculino , Microcefalia/genética , Mitomicina/farmacologia , Modelos Animais , Ovário/fisiologia , Linhagem , Irmãos , Adulto Jovem
6.
J Child Neurol ; 33(7): 482-486, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29687738

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is a multisystem disorder diagnosed by clinical criteria and/or genetic testing. Genetic testing reveals atypical phenotypes that have not met clinical criteria, with practical implications. METHODS: We describe 4 family members with pathogenic partial deletion in TSC1 who individually did not meet tuberous sclerosis complex clinical criteria. RESULTS: Family members had different and atypical findings of tuberous sclerosis complex. Although none of the family members fulfilled the clinical criteria for tuberous sclerosis complex, they all carried the same genomic deletion (9q34.13q34.2) that included part of the TSC1 gene. One member had ganglioglioma and intractable seizures, one sibling presented with seizures, developmental delay, and displayed white matter abnormalities; another sibling had no clinical manifestations but has cortical tuber. Their mother has facial angiofibroma, cortical tuber, and seizures during infancy. CONCLUSIONS: Ganglioglioma may be a phenotypic expression of TSC1. Genetic testing is recommended for infants with brain tumors, especially those with an abnormal familial history.


Assuntos
Neoplasias Encefálicas/genética , Epilepsia/genética , Ganglioglioma/genética , Deficiência Intelectual/genética , Deleção de Sequência , Proteína 1 do Complexo Esclerose Tuberosa/genética , Neoplasias Encefálicas/diagnóstico por imagem , Criança , Pré-Escolar , Epilepsia/diagnóstico por imagem , Família , Feminino , Ganglioglioma/diagnóstico por imagem , Humanos , Deficiência Intelectual/diagnóstico por imagem , Masculino , Fenótipo
8.
Neurology ; 88(11): 1021-1028, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28188302

RESUMO

OBJECTIVE: To identify the genetic basis of a recessive congenital neurologic syndrome characterized by severe hypotonia, arthrogryposis, and respiratory failure. METHODS: Identification of the responsible gene by exome sequencing and assessment of the effect of the mutation on protein stability in transfected rat neuronal-like PC12A123.7 cells. RESULTS: Two brothers from a nonconsanguineous Yemeni Jewish family manifested at birth with severe hypotonia and arthrogryposis. The older brother died of respiratory failure at 5 days of age. The proband, now 4.5 years old, has been mechanically ventilated since birth with virtually no milestones achievement. Whole exome sequencing revealed homozygosity of SLC18A3 c.1078G>C, p.Gly360Arg in the affected brothers but not in other family members. SLC18A3 p.Gly360Arg is not reported in world populations but is present at a carrier frequency of 1:30 in healthy Yemeni Jews. SLC18A3 encodes the vesicular acetylcholine transporter (VAChT), which loads newly synthesized acetylcholine from the neuronal cytoplasm into synaptic vesicles. Mice that are VAChT-null have been shown to die at birth of respiratory failure. In human VAChT, residue 360 is located in a conserved region and substitution of arginine for glycine is predicted to disrupt proper protein folding and membrane embedding. Stable transfection of wild-type and mutant human VAChT into neuronal-like PC12A123.7 cells revealed similar mRNA levels, but undetectable levels of the mutant protein, suggesting post-translational degradation of mutant VAChT. CONCLUSION: Loss of function of VAChT underlies severe arthrogryposis and respiratory failure. While most congenital myasthenic syndromes are caused by defects in postsynaptic proteins, VAChT deficiency is a presynaptic myasthenic syndrome.


Assuntos
Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Adulto , Animais , Arginina/genética , Saúde da Família , Glicina/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Síndromes Miastênicas Congênitas/complicações , Células PC12 , Processamento de Proteína Pós-Traducional/genética , RNA Mensageiro , Ratos , Transfecção , Proteínas Vesiculares de Transporte de Acetilcolina/genética
9.
Nat Genet ; 49(2): 223-237, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27992417

RESUMO

Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.


Assuntos
Distonia/genética , Histona-Lisina N-Metiltransferase/genética , Mutação/genética , Adolescente , Proteínas de Ligação a DNA/genética , Feminino , Histona Metiltransferases , Histonas/genética , Humanos , Lisina/genética , Masculino , Metilação , Proteínas Nucleares/genética
10.
Neurology ; 86(21): 2016-24, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27164683

RESUMO

OBJECTIVE: To identify the genetic basis of a recessive syndrome characterized by prenatal hyperechogenic brain foci, congenital microcephaly, hypothalamic midbrain dysplasia, epilepsy, and profound global developmental disability. METHODS: Identification of the responsible gene by whole exome sequencing and homozygosity mapping. RESULTS: Ten patients from 4 consanguineous Palestinian families manifested in utero with hyperechogenic brain foci, microcephaly, and intrauterine growth retardation. Postnatally, patients had progressive severe microcephaly, neonatal seizures, and virtually no developmental milestones. Brain imaging revealed dysplastic elongated masses in the midbrain-hypothalamus-optic tract area. Whole exome sequencing of one affected child revealed only PCDH12 c.2515C>T, p.R839X, to be homozygous in the proband and to cosegregate with the condition in her family. The allele frequency of PCDH12 p.R839X is <0.00001 worldwide. Genotyping PCDH12 p.R839X in 3 other families with affected children yielded perfect cosegregation with the phenotype (probability by chance is 2.0 × 10(-12)). Homozygosity mapping revealed that PCDH12 p.R839X lies in the largest homozygous region (11.7 MB) shared by all affected patients. The mutation reduces transcript expression by 84% (p < 2.4 × 10(-13)). PCDH12 is a vascular endothelial protocadherin that promotes cellular adhesion. Endothelial adhesion disruptions due to mutations in OCLN or JAM3 also cause congenital microcephaly, intracranial calcifications, and profound psychomotor disability. CONCLUSIONS: Loss of function of PCDH12 leads to recessive congenital microcephaly with profound developmental disability. The phenotype resembles Aicardi-Goutières syndrome and in utero infections. In cases with similar manifestations but no evidence of infection, our results suggest consideration of an additional, albeit rare, cause of congenital microcephaly.


Assuntos
Encéfalo/diagnóstico por imagem , Caderinas/genética , Microcefalia/diagnóstico por imagem , Microcefalia/genética , Mutação , Encéfalo/crescimento & desenvolvimento , Consanguinidade , Análise Mutacional de DNA , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Diagnóstico Diferencial , Feminino , Retardo do Crescimento Fetal/diagnóstico por imagem , Retardo do Crescimento Fetal/genética , Humanos , Lactente , Recém-Nascido , Linhagem , Fenótipo , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico por imagem , Diagnóstico Pré-Natal , Protocaderinas , Síndrome , Doenças Uterinas/diagnóstico por imagem
12.
N Engl J Med ; 370(10): 921-31, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24552285

RESUMO

BACKGROUND: Polyarteritis nodosa is a systemic necrotizing vasculitis with a pathogenesis that is poorly understood. We identified six families with multiple cases of systemic and cutaneous polyarteritis nodosa, consistent with autosomal recessive inheritance. In most cases, onset of the disease occurred during childhood. METHODS: We carried out exome sequencing in persons from multiply affected families of Georgian Jewish or German ancestry. We performed targeted sequencing in additional family members and in unrelated affected persons, 3 of Georgian Jewish ancestry and 14 of Turkish ancestry. Mutations were assessed by testing their effect on enzymatic activity in serum specimens from patients, analysis of protein structure, expression in mammalian cells, and biophysical analysis of purified protein. RESULTS: In all the families, vasculitis was caused by recessive mutations in CECR1, the gene encoding adenosine deaminase 2 (ADA2). All the Georgian Jewish patients were homozygous for a mutation encoding a Gly47Arg substitution, the German patients were compound heterozygous for Arg169Gln and Pro251Leu mutations, and one Turkish patient was compound heterozygous for Gly47Val and Trp264Ser mutations. In the endogamous Georgian Jewish population, the Gly47Arg carrier frequency was 0.102, which is consistent with the high prevalence of disease. The other mutations either were found in only one family member or patient or were extremely rare. ADA2 activity was significantly reduced in serum specimens from patients. Expression in human embryonic kidney 293T cells revealed low amounts of mutant secreted protein. CONCLUSIONS: Recessive loss-of-function mutations of ADA2, a growth factor that is the major extracellular adenosine deaminase, can cause polyarteritis nodosa vasculopathy with highly varied clinical expression. (Funded by the Shaare Zedek Medical Center and others.).


Assuntos
Adenosina Desaminase/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Poliarterite Nodosa/genética , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Adolescente , Idade de Início , Criança , Pré-Escolar , Exoma , Feminino , Genes Recessivos , República da Geórgia , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Judeus/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Poliarterite Nodosa/patologia , Turquia
13.
J Med Genet ; 50(4): 240-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23393310

RESUMO

BACKGROUND: Agenesis of corpus callosum has been associated with several defects of the mitochondrial respiratory chain and the citric acid cycle. We now report the results of the biochemical and molecular studies of a patient with severe neurodevelopmental disease manifesting by agenesis of corpus callosum and optic nerve hypoplasia. METHODS AND RESULTS: A mitochondrial disease was suspected in this patient based on the prominent excretion of 2-hydroxyglutaric acid and Krebs cycle intermediates in urine and the finding of increased reactive oxygen species content and decreased mitochondrial membrane potential in her fibroblasts. Whole exome sequencing disclosed compound heterozygosity for two pathogenic variants in the SLC25A1 gene, encoding the mitochondrial citrate transporter. These variants, G130D and R282H, segregated in the family and were extremely rare in controls. The mutated residues were highly conserved throughout evolution and in silico modeling investigations indicated that the mutations would have a deleterious effect on protein function, affecting either substrate binding to the transporter or its translocation mechanism. These predictions were validated by the observation that a yeast strain harbouring the mutations at equivalent positions in the orthologous protein exhibited a growth defect under stress conditions and by the loss of activity of citrate transport by the mutated proteins reconstituted into liposomes. CONCLUSIONS: We report for the first time a patient with a mitochondrial citrate carrier deficiency. Our data support a role for citric acid cycle defects in agenesis of corpus callosum as already reported in patients with aconitase or fumarate hydratase deficiency.


Assuntos
Agenesia do Corpo Caloso/genética , Proteínas de Transporte de Ânions/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Nervo Óptico/patologia , Adolescente , Agenesia do Corpo Caloso/patologia , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Humanos , Doenças Mitocondriais , Proteínas Mitocondriais/metabolismo , Mutação , Nervo Óptico/metabolismo , Transportadores de Ânions Orgânicos
14.
J Inherit Metab Dis ; 35(1): 125-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21607760

RESUMO

Defects of the mitochondrial oxidative phosphorylation (OXPHOS) system are frequent causes of neurological disorders in children. Linkage analysis and DNA sequencing identified a new founder p.G250V substitution in the C20ORF7 complex I chaperone in five Ashkenazi Jewish patients from two families with a combined OXPHOS complex I and IV defect presenting with Leigh's syndrome in infancy. Complementation with the wild type gene restored complex I, but only partially complex IV activity. Although the pathogenic mechanism remains elusive, a C20ORF7 defect should be considered not only in isolated complex I deficiency, but also in combination with decreased complex IV. Given the significant 1:290 carrier rate for the p.G250V mutation among Ashkenazi Jews, this mutation should be screened in all Ashkenazi patients with Leigh's syndrome prior to muscle biopsy.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/genética , Metiltransferases/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Biópsia , Criança , Pré-Escolar , Saúde da Família , Feminino , Teste de Complementação Genética , Humanos , Judeus , Doença de Leigh/genética , Masculino , Modelos Genéticos , Músculos/patologia
15.
Eur J Hum Genet ; 18(10): 1100-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20512159

RESUMO

Warburg Micro Syndrome is a rare, autosomal recessive syndrome characterized by microcephaly, microphthalmia, microcornia, congenital cataracts, optic atrophy, cortical dysplasia, in particular corpus callosum hypoplasia, severe mental retardation, spastic diplegia, and hypogonadism. We have found five new mutations in the RAB3GAP1 gene in seven patients with suspected Micro Syndrome from families with Turkish, Palestinian, Danish, and Guatemalan backgrounds. A thorough clinical investigation of the patients has allowed the delineation of symptoms that are consistently present in the patients and may aid the differential diagnosis of Micro Syndrome for patients in the future. All patients had postnatal microcephaly, micropthalmia, microcornia, bilateral congenital cataracts, short palpebral fissures, optic atrophy, severe mental retardation, and congenital hypotonia with subsequent spasticity. Only one patient had microcephaly at birth, highlighting the fact that congenital microcephaly is not a consistent feature of Micro syndrome. Analysis of the brain magnetic resonance imagings (MRIs) revealed a consistent pattern of polymicrogyria in the frontal and parietal lobes, wide sylvian fissures, a thin hypoplastic corpus callosum, and increased subdural spaces. All patients were homozygous for the mutations detected and all mutations were predicted to result in a truncated RAB3GAP1 protein. The analysis of nine polymorphic markers flanking the RAB3GAP1 gene showed that the mutation c.1410C>A (p.Tyr470X), for which a Danish patient was homozygous, occurred on a haplotype that is shared by the unrelated heterozygous parents of the patient. This suggests a possible founder effect for this mutation in the Danish population.


Assuntos
Encéfalo/patologia , Mutação , Proteínas rab3 de Ligação ao GTP/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Árabes , Encéfalo/anormalidades , Encéfalo/fisiopatologia , Catarata/congênito , Catarata/genética , Catarata/patologia , Cromossomos Humanos Par 2/genética , Córnea/anormalidades , Córnea/patologia , Dinamarca , Efeito Fundador , Marcadores Genéticos , Predisposição Genética para Doença , Guatemala , Humanos , Hipogonadismo/genética , Hipogonadismo/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Microcefalia/genética , Microcefalia/patologia , Atrofia Óptica/genética , Atrofia Óptica/patologia , Turquia
16.
Harefuah ; 145(12): 889-94, 942, 2006 Dec.
Artigo em Hebraico | MEDLINE | ID: mdl-17220027

RESUMO

All living organisms are equipped with DNA repair systems that can cope with a wide variety of DNA lesions. Among these repair pathways, nucleotide excision repair (NER) is quite versatile, involved in the removal of a variety of bulky DNA lesions induced by ultraviolet light and chemical carcinogens and mutagens. The importance of NER for human health is illustrated mainly by the occurrence of rare life-threatening disorders such as Xeroderma Pigmentosum (XP), Cockayne Syndrome (CS) and Trichthiodystrophy (TTD). XP, CS and most TTD patients exhibit increased sensitivity to UV light and premature aging. XP is associated with a high incidence of skin tumors, CS is primarily a developmental disorder associated with failure to thrive, and psychomotor retardation. The authors report the clinical, biochemical and molecular aspects of the NER pathway in individuals suspected to have a DNA repair, NER type-related disease. These diseases are rare worldwide, but are frequent in Israel, probably due to the high rate of consanguinity among certain Arab, Druze and Jewish populations. Our laboratory is the only one in Israel, and one of very few labs world-wide that is performing DNA repair evaluation as a diagnostic test for DNA repair-deficient inherited diseases. Identification of the causative genes and proteins in suspected families will facilitate accurate diagnosis, genetic counseling, identification of couples at risk and prenatal diagnosis.


Assuntos
Reparo do DNA/genética , Doenças Genéticas Inatas/genética , DNA/genética , Feminino , Humanos , Masculino , Linhagem , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA