Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896422

RESUMO

When properly compatibilized, the blending of polyethylene (PE) and polyamide (PA) leads to materials that combine low prices, suitable processability, impact resistance, and attractive mechanical properties. Moreover, the possibility of using these polymers without prior separation may be a suitable opportunity for their recycling. In this work, the use of an epoxidized waste vegetable oil (EWVO) was investigated as a green compatibilizer precursor (CP) for the reactive blending of a high-density PE (HDPE) with a polyamide-6 (PA6). EWVO was synthesized from waste vegetable cooking oil (WVO) using ion-exchange resin (Amberlite) as a heterogeneous catalyst. HDPE/PA6 blends were produced with different weight ratios (25/75, 75/25, 85/15) and amounts of EWVO (1, 2, 5 phr). Samples with WVO or a commercial fossil-based CP were also prepared for comparison. All the blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheology, and mechanical tests. In the case of HDPE/PA6 75/25 and 85/15 blends, the addition of EWVO at 2 phr showed a satisfactory compatibilizing effect, thus yielding a material with improved mechanical properties with respect to the blend without compatibilizer. On the contrary, the HDPE/PA6 25/75 ratio yielded a material with a high degree of crosslinking that could not be further processed or characterized. In conclusion, the results showed that EWVO had a suitable compatibilizing effect in HDPE/PA6 blends with high HDPE content, while it resulted in unsuitable for blends with high content of PA6.

2.
Molecules ; 26(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810520

RESUMO

A novel strategy involving Olive Leaf Extract (OLE) and Cold Atmospheric Plasma (CAP) was developed as a green antimicrobial treatment. Specifically, we reported a preliminary investigation on the combined use of OLE + CAP against three pathogens, chosen to represent medical and food industries (i.e., E. coli, S. aureus and L. innocua). The results indicated that a concentration of 100 mg/mL (total polyphenols) in OLE can exert an antimicrobial activity, but still insufficient for a total bacterial inactivation. By using plain OLE, we significantly reduced the growth of Gram positive S. aureus and L. innocua, but not Gram-negative E. coli. Instead, we demonstrated a remarkable decontamination effect of OLE + CAP in E. coli, S. aureus and L. innocua samples after 6 h. This effect was optimally maintained up to 24 h in S. aureus strain. E. coli and L. innocua grew again in 24 h. In the latter strain, OLE alone was most effective to significantly reduce bacterial growth. By further adjusting the parameters of OLE + CAP technology, e.g., OLE amount and CAP exposure, it could be possible to prolong the initial powerful decontamination over a longer time. Since OLE derives from a bio-waste and CAP is a non-thermal technology based on ionized air, we propose OLE + CAP as a potential green platform for bacterial decontamination. As a combination, OLE and CAP can lead to better antimicrobial activity than individually and may replace or complement conventional thermal procedures in food and biomedical industries.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Listeria/efeitos dos fármacos , Olea/química , Extratos Vegetais/farmacologia , Gases em Plasma/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Microbiologia Ambiental
3.
J Biotechnol ; 295: 28-36, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30853636

RESUMO

This study disserts on the exploitation of olive mill wastewater (OMW) for the production of both bio-based poly-ß-hydroxybutyrate (PHB) and hydrogen (H2) by using the residual effluent as feedstock for growing purple bacteria after the recovery of hydroxytyrosol-rich mixtures. In particular, Rhodopseudomonas sp. S16-FVPT5 was fed with either the virgin OMW or dephenolized-OMW (d-OMW). For polyphenols removal, the OMW was treated with activated carbon; subsequently, acidified ethanol (pH = 3.1) at 50 °C was used as extractor solvent for obtaining hydroxytyrosol-rich mixtures. The maximum hydroxytyrosol content in the resultant polyphenolic mixture was 2.02 g/L. The highest co-production of PHB (315 mg PHB/L) and H2 (2236 mL H2/L) were achieved feeding Rhodopseudomonas sp. S16-FVPT5 with pure d-OMW. The highest hydrogen yield (4.55 L(H2)/Ld-OMW) was obtained feeding the bacterium with d-OMW, diluted at 25%; by increasing the content of d-OMW into the culture broth the hydrogen yield progressively decreased. Lower results were obtained by feeding the bacterium with a synthetic medium, the cumulative hydrogen was 1855 mL H2/L); the PHB was 101 mg PHB/L. The highest theoretical light conversion efficiency was 2.36% with the synthetic medium and 1.99% when feeding Rhodopseudomonas sp. S16-FVPT5 with d-OMW diluted with water 50%, v/v.


Assuntos
Olea/química , Álcool Feniletílico/análogos & derivados , Fotobiorreatores/microbiologia , Rodopseudomonas/metabolismo , Águas Residuárias/química , Hidrogênio/análise , Hidrogênio/metabolismo , Resíduos Industriais , Álcool Feniletílico/química , Álcool Feniletílico/metabolismo , Polifenóis/análise , Polifenóis/metabolismo , Eliminação de Resíduos Líquidos
4.
J Air Waste Manag Assoc ; 62(8): 888-97, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22916436

RESUMO

This study was aimed at evaluating the effects of gasoline-ethanol blends on the exhaust emissions in a catalyst-equipped four-stroke moped engine. The ethanol was blended with unleaded gasoline in at percentages (10, 15, and 20% v/v). The regulated pollutants and the particulate matter emissions were evaluated over the European ECE R47 driving cycle on the chassis dynamometer bench. Particulate matter was characterized in terms of total mass collected on filters and total number ofparticles in the range 7 nm-10 microm measured by electrical low-pressure impactor (ELPI). In addition, particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions were evaluated to assess the health impact of the emitted particulate. Finally, an accurate morphological analysis was performed on the particulate by high-resolution transmission electron microscope (TEM) equipped with a digital image-processing/data-acquisition system. In general, CO emission reductions of 60-70% were obtained with 15 and 20% v/v ethanol blends, while the ethanol use did not reduce hydrocarbon (HC) and NOx emissions. No evident effect of ethanol on the particulate mass emissions and associated PAHs emissions was observed. Twenty-one PAHs were quantified in the particulate phase with emissions ranging from 26 to 35 microg/km and benzo[a]pyrene equivalent (BaPeq) emission factors from 2.2 to 4.1 microg/km. Both particulate matter and associated PAHs with higher carcinogenic risk were mainly emitted in the submicrometer size range (<0.1 microm). On the basis of the TEM observations, no relevant effect of the ethanol use on the particulate morphology was evidenced, showing aggregates composed ofprimary particles with mean diameters in the range 17.5-32.5 nm.


Assuntos
Poluentes Atmosféricos/química , Biocombustíveis/análise , Etanol/química , Gasolina/análise , Motocicletas , Emissões de Veículos/análise , Monóxido de Carbono , Microscopia Eletrônica de Transmissão , Nitratos , Material Particulado
5.
Waste Manag ; 32(10): 1826-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22658685

RESUMO

In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH(3), HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H(2)S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.


Assuntos
Gases/análise , Esgotos , Gerenciamento de Resíduos , Biocombustíveis , Meio Ambiente
6.
Environ Sci Technol ; 36(21): 4656-62, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12433178

RESUMO

A comparison of the performance of Brassica carinata oil-derived biodiesel with a commercial rapeseed oil-derived biodiesel and petroleum diesel fuel is discussed as regards engine performance and regulated and unregulated exhaust emissions. B. carinata is an oil crop that can be cultivated in coastal areas of central-southern Italy, where it is more difficult to achieve the productivity potentials of Brassica napus (by far the most common rapeseed cultivated in continental Europe). Experimental tests were carried out on a turbocharged direct injection passenger car diesel engine fueled with 100% biodiesel. The unregulated exhaust emissions were characterized by determining the SOOT and soluble organic fraction content in the particulate matter, together with analysis of the content and speciation of polycyclic aromatic hydrocarbons, some of which are potentially carcinogenic, and of carbonyl compounds (aldehydes, ketones) that act as ozone precursors. B. carinata and commercial biodiesel behaved similarly as far as engine performance and regulated and unregulated emissions were concerned. When compared with petroleum diesel fuel, the engine test bench analysis did not show any appreciable variation of output engine torque values, while there was a significant difference in specific fuel consumption data at the lowest loads for the biofuels and petroleum diesel fuel. The biofuels were observed to produce higher levels of NOx concentrations and lower levels of PM with respect to the diesel fuel. The engine heat release analysis conducted shows that there is a potential for increased thermal NOx generation when firing biodiesel with no prior modification to the injection timing. It seems that, for both the biofuels, this behavior is caused by an advanced combustion evolution, which is particularly apparent at the higher loads. When compared with petroleum diesel fuel, biodiesel emissions contain less SOOT, and a greater fraction of the particulate was soluble. The analysis and speciation of the soluble organic fraction of biodiesel particulate suggest that the carcinogenic potential of the biodiesel emissions is probably lower than that of petroleum diesel. Its better adaptivity and productivity in clay and sandy-type soils and in semiarid temperate climate and the fact that the performance of its derived biodiesel is quite similar to commercial biodiesel make B. carinata a promising oil crop that could offer the possibility of exploiting the Mediterranean marginal areas for energetic purposes.


Assuntos
Fontes de Energia Bioelétrica , Brassica , Óleos de Plantas , Emissões de Veículos/análise , Poluição do Ar/prevenção & controle , Itália , Tamanho da Partícula , Petróleo , Hidrocarbonetos Policíclicos Aromáticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA