Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809883

RESUMO

Neuroblastoma is the most common solid extracranial tumour in children. Despite major advances in available therapies, children with drug-resistant and/or recurrent neuroblastoma have a dismal outlook with 5-year survival rates of less than 20%. Therefore, tackling relapsed tumour biology by developing and characterising clinically relevant models is a priority in finding targetable vulnerability in neuroblastoma. Using matched cisplatin-sensitive KellyLuc and resistant KellyCis83Luc cell lines, we developed a cisplatin-resistant metastatic MYCN-amplified neuroblastoma model. The average number of metastases per mouse was significantly higher in the KellyCis83Luc group than in the KellyLuc group. The vast majority of sites were confirmed as having lymph node metastasis. Their stiffness characteristics of lymph node metastasis values were within the range reported for the patient samples. Targeted transcriptomic profiling of immuno-oncology genes identified tumour necrosis factor receptor superfamily member 4 (TNFRSF4) as a significantly dysregulated MYCN-independent gene. Importantly, differential TNFRSF4 expression was identified in tumour cells rather than lymphocytes. Low TNFRSF4 expression correlated with poor prognostic indicators in neuroblastoma, such as age at diagnosis, stage, and risk stratification and significantly associated with reduced probability of both event-free and overall survival in neuroblastoma. Therefore, TNFRSF4 Low expression is an independent prognostic factor of survival in neuroblastoma.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neuroblastoma , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/mortalidade , Neuroblastoma/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Cisplatino/uso terapêutico , Cisplatino/farmacologia , Camundongos , Linhagem Celular Tumoral , Prognóstico , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Regulação Neoplásica da Expressão Gênica , Feminino , Metástase Linfática
3.
Exp Hematol Oncol ; 13(1): 38, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581035

RESUMO

Rhabdomyosarcoma (RMS), such as other childhood tumors, has witnessed treatment advancements in recent years. However, high-risk patients continue to face poor survival rates, often attributed to the presence of the PAX3/7-FOXO1 fusion proteins, which has been associated with metastasis and treatment resistance. Despite efforts to directly target these chimeric proteins, clinical success remains elusive. In this study, the main aim was to address this challenge by investigating regulators of FOXO1. Specifically, we focused on TRIB3, a potential regulator of the fusion protein in RMS. Our findings revealed a prominent TRIB3 expression in RMS tumors, highlighting its correlation with the presence of fusion protein. By conducting TRIB3 genetic inhibition experiments, we observed an impairment on cell proliferation. Notably, the knockdown of TRIB3 led to a decrease in PAX3-FOXO1 and its target genes at protein level, accompanied by a reduction in the activity of the Akt signaling pathway. Additionally, inducible silencing of TRIB3 significantly delayed tumor growth and improved overall survival in vivo. Based on our analysis, we propose that TRIB3 holds therapeutic potential for treating the most aggressive subtype of RMS. The findings herein reported contribute to our understanding of the underlying molecular mechanisms driving RMS progression and provide novel insights into the potential use of TRIB3 as a therapeutic intervention for high-risk RMS patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA