Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Cell Dev Biol ; 12: 1353860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601081

RESUMO

Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.

2.
Neurotox Res ; 41(6): 698-707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847429

RESUMO

Alzheimer's disease contributes to 60-70% of all dementia cases in the general population. Belonging to the BIN1/amphiphysin/RVS167 (BAR) superfamily, the bridging integrator (BIN1) has been identified to impact two major pathological hallmarks in Alzheimer's disease (AD), i.e., amyloid beta (Aß) and tau accumulation. Aß accumulation is found to increase by BIN1 knockdown in cortical neurons in late-onset AD, due to BACE1 accumulation at enlarged early endosomes. Two BIN1 mutants, KR and PL, were identified to exhibit Aß accumulation. Furthermore, BIN1 deficiency by BIN1-related polymorphisms impairs the interaction with tau, thus elevating tau phosphorylation, altering synapse structure and tau function. Even though the precise role of BIN1 in the neuronal tissue needs further investigation, the authors aim to throw light on the potential of BIN1 and unfold its implications on tau and Aß pathology, to aid AD researchers across the globe to examine BIN1, as an appropriate target gene for disease management.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas tau/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
3.
Int J Biol Macromol ; 253(Pt 1): 126595, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37648139

RESUMO

Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Biomarcadores Tumorais
4.
Inflammopharmacology ; 31(4): 1577-1588, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37335368

RESUMO

Rheumatoid arthritis is a systemic chronic polyarticular autoimmune disorder of joints and joint membrane mainly affecting feet and hands. The pathological manifestation of the disease includes infiltration of immune cells, hyperplasia of the lining of synovium, formation of pannus and bone and cartilage destruction. If left untreated, the appearance of small focal necrosis, adhesion of granulation, and formation of fibrous tissue on the surface of articular cartilage is noted. The disease primarily affects nearly 1% of the population globally, women being more affected than men with a ratio 2:1 and can initiate regardless of any age. The synovial fibroblast in rheumatoid arthritis individuals exhibits an aggressive phenotype which upregulates the manifestation of protooncogenes, adhesive compounds, inflammatory cytokines and matrix-deteriorating enzymes. Apart from the inflammatory effects of cytokines, chemokines are also noted to induce swelling and pain in arthritic individuals by residing in synovial membrane and forming pannus. The current treatment of rheumatoid arthritis includes treatment with non-steroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs, treatment with biologics such as inhibitors of TNF-α, interleukins, platelet activating factor, etc. which provides significant relief from symptoms and aids in management of the disease. The current review highlights the pathogenesis involved in the onset of rheumatoid arthritis and also covers epigenetic, cellular and molecular parameters associated with it to aid better and advanced therapeutic approaches for management of the debilitating disease.


Assuntos
Antirreumáticos , Artrite Reumatoide , Feminino , Humanos , Membrana Sinovial , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Epigênese Genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-36509251

RESUMO

Depression is the most prevalent and devastating neuropsychiatric disorder. There are several conventional antidepressants used for the treatment of depression. But due to their undesired adverse effects, patient compliance is very poor. Thus, developing novel medications for the treatment of depression is a critical strategic priority for meeting therapeutic demands. Current research is looking for alternatives to traditional antidepressants to reduce undesired side effects and increase efficacy. Phytoconstituents provide a wide research range in antidepressant treatments. In the present article, we have conducted a comprehensive assessment of neurological evidence, which supports the usefulness of phytoconstituents in the treatment of the depressive disorder. Secondary plant metabolites including alkaloids, polyphenols, glycosides, saponins, and terpenoids were found to exhibit antidepressant action. Most of the phytoconstituents were found to mediate their antidepressant effect through the upregulation of brain-derived neurotrophic factor (BDNF), serotonin, noradrenaline, and dopamine. Some were also found to exert antidepressant effects by inhibiting the monoamine oxidase (MAO) activity and hypothalamic-pituitary-adrenal (HPA) axis overactivity.


Assuntos
Antidepressivos , Serotonina , Humanos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico
6.
Environ Sci Pollut Res Int ; 30(3): 6170-6191, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35994146

RESUMO

Glioblastoma multiforme, a rare traumatic brain disorder, is at the research climax for its uncontrolled growth leading to a catastrophic outcome. Throwing light on the target-based virtual screening of drugs using natural phytocompounds is a striking cornerstone in glioblastoma-based drug discovery, accelerating with leaps and bounds. This project aims to develop promising lead compounds against glioblastoma brain cancer using OliveNet™, an open-source database. In this pursuit, our rationale for selecting molecules was based on their capability to pass through the blood-brain barrier. Out of 51 derivative molecules from flavonoids and polyphenols, 17 molecules were screened out bearing the best ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, alongside fulfilling our rationale of lead selection. Two polyphenols, 3,4,5-trimethoxybenzoic acid and 4-ethyl guaiacol, have binding affinity for the antioxidant flavonoid luteolin of -5.1 and -4.3 kcal/mol, respectively. According to docking studies, the residues ASN1960, ASN1966, ASN1960, PHE1984, TYR1896, VAL1911, and LYS1966 make both polar and nonpolar interactions with 3,4,5-trimethoxybenzoic acid and 4-ethylguanidine, respectively. LD50 values of toxicity screening using TOX Pro brought to limelight the excellent safety profile of polyphenols and flavonoids. Furthermore, studies using in silico cytotoxicity prediction and molecular modelling have decisively shown that these polyphenols are likely to be effective brain cancer inhibitors and promising future lead candidates against glioblastoma multiforme.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Olea , Humanos , Simulação de Acoplamento Molecular , Chumbo , Flavonoides , Polifenóis
7.
Neurotox Res ; 40(5): 1570-1585, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930172

RESUMO

Antidepressant use has resulted in a variety of negative consequences, including permanent brain damage and erectile dysfunction. So, the purpose lies in developing something more productive with minimal side effects and consequently improved efficacy. A growing body of evidences indicated a remarkable purinergic signalling system, which helped in dealing with this complication. This has been found to be a powerful formula in dealing with psychiatric disorders. P1 (adenosine), P2X, and P2Y (ATP) are the receptors, involved in the pathology as well as exhibiting the therapeutic action by triggering the purinergic pathway. It was found that A2A and P2X7 receptors specifically were involved and recognized as possible targets for treating depression. Further, the development of biomarkers for the diagnosis of depression has also been attributed to accelerate the process. One such biomarker includes serum uric acid. Many clinical studies reveal the importance of antagonizing P2X7 and A2A receptors, for promising research in understanding the molecular premises of depression. However, further investigations are still needed to be done to open several unfolded mysteries for a better and safe upshot. The selective antagonists for A2A and P2X7 receptors may have antidepressant effects showing positive results, in agreement with non-clinical testing. In this review, efforts are being devoted to the targeted receptors in bringing out antidepressant effects with a possible link involving depression and defined purinergic signalling. Additionally, the overview of various receptors, including their functions and distribution, is being explored in a representative way along with the biomarkers involved.


Assuntos
Depressão , Ácido Úrico , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Humanos , Masculino , Receptores Purinérgicos/metabolismo
8.
Stem Cell Rev Rep ; 18(8): 2757-2780, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35793037

RESUMO

Treatment of numerous ailments has been made accessible by the advent of genetic engineering, where the self-renewal property has unfolded the mysteries of regeneration, i.e., stem cells. This is narrowed down to pluripotency, the cell property of differentiating into other adult cells. The generation of induced pluripotent stem cells (iPSCs) was a major breakthrough in 2006, which was generated by a cocktail of 4 Yamanaka Factors, following which significant advancements have been reported in medical science and therapeutics. The iPSCs are reprogrammed from somatic cells, and the fascinating results focused on developing authentic techniques for their generation via molecular reprogramming mechanisms, with a plethora of molecules, like NANOG, miRNAs, and DNA modifying agents, etc. The iPSCs have exhibited reliable results in assessing the etiology and molecular mechanisms of diseases, followed by the development of possible treatments and the elimination of risks of immune rejection. The authors formulate a comprehensive review to develop a clear understanding of iPSC generation, their advantages and limitations, with potential challenges associated with their medical utility. In addition, a wide compendium of applications of iPSCs in regenerative medicine and disease modeling has been discussed, alongside bioengineering technologies for iPSC reprogramming, expansion, isolation, and differentiation. The manuscript aims to provide a holistic picture of the booming advancement of iPSC therapy, to attract the attention of global researchers, to investigate this versatile approach in treatment of multiple disorders, subsequently overcoming the challenges, in order to effectively expand its therapeutic window.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mostardeira , Diferenciação Celular , Medicina Regenerativa , Atenção à Saúde
9.
Am J Transl Res ; 14(6): 3584-3602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836845

RESUMO

Diabetes mellitus (DM), a metabolic disorder characterized by insulin-deficiency or insulin-resistant conditions. The foremost microvascular complication of diabetes is diabetic retinopathy (DR). This is a multifaceted ailment mainly caused by the enduring adverse effects of hyperglycaemia. Inflammation, oxidative stress, and advanced glycation products (AGES) are part and parcel of DR pathogenesis. In regulating many cellular and biological processes, the family of fork-head transcription factors plays a key role. The current review highlights that FOXO is a requisite regulator of pathways intricate in diabetic retinopathy on account of its effect on microvascular cells inflammatory and apoptotic gene expression, and FOXO also has the foremost province in regulating cell cycle, proliferation, apoptosis, and metabolism. Blockage of insulin turns into an exaggerated level of glucose in the bloodstream and can upshot into the exaggerated triggering of FOXO1, which can ultimately uplift the production of several factors of apoptosis and inflammation, such as TNF-α, NF-kB, and various others, as well as reactive oxygen species, which can also come up with diabetic retinopathy. The current review also focuses on various therapies which can be used in the future, like SIRT1 signalling, resveratrol, retinal VEGF, etc., which can be used to suppress FOXO over activation and can prevent the progression of diabetic complications viz. diabetic retinopathy.

10.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562956

RESUMO

Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.


Assuntos
Neuropeptídeos , Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Humanos , Inflamação/patologia , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Neuropeptídeos/uso terapêutico , Neuroproteção , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
11.
Inflammopharmacology ; 30(3): 737-748, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35364736

RESUMO

Rheumatoid arthritis (RA) is a chronic multifactorial disease, provocative, and degenerative autoimmune condition that impacts millions of individuals around the globe. As a result of this understanding, anti-inflammatory drugs have been created, perhaps widely effective (like steroids) and highly specialized methods (including anti-TNF antibody) using biological therapies (including TNF inhibitors). Despite this, the connections between inflammatory response, articular development, and intracellular responsiveness to changes in oxygen concentration are undervalued in rheumatoid arthritis. Hypoxia, or a lack of oxygen, is thought to cause enhanced synovial angiogenesis in RA, which is mediated by some of the hypoxia-inducible factors like vascular endothelial growth factor (VEGF). Substantial genetic alterations occur when the HIF regulatory factors signaling cycle is activated, allowing organelles, tissues, and species to acclimatize to decreasing oxygen saturation. The most well-characterized hypoxia-responsive transcripts are the angiogenic stimulant VEGF, whose production is greatly elevated by hypoxia in several types of cells, especially RA synovium fibroblasts. Blocking vascular endothelial growth factors has been demonstrated to be helpful in murine models of rheumatism, indicating how hypoxia could trigger the angiogenesis process, resulting in the progression of RA. These mechanisms highlight the intimate affiliation amongst hypoxia, angiogenesis, and inflammation in rheumatoid arthritis. This review will look at how hypoxia activates molecular pathways and how other pathways involving inflammatory signals develop and sustain synovitis in rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Fator A de Crescimento do Endotélio Vascular , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Humanos , Hipóxia/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Oxigênio/uso terapêutico , Inibidores do Fator de Necrose Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Biomed Pharmacother ; 148: 112756, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35228064

RESUMO

The 2019 corona virus disease (COVID-19) has caused a global chaos, where a novel Omicron variant has challenged the healthcare system, followed by which it has been referred to as a variant of concern (VOC) by the World Health Organization (WHO), owing to its alarming transmission and infectivity rate. The large number of mutations in the receptor binding domain (RBD) of the spike protein is responsible for strengthening of the spike-angiotensin-converting enzyme 2 (ACE2) interaction, thereby explaining the elevated threat. This is supplemented by enhanced resistance of the variant towards pre-existing antibodies approved for the COVID-19 therapy. The manuscript brings into light failure of existing therapies to provide the desired effect, however simultaneously discussing the novel possibilities on the verge of establishing suitable treatment portfolio. The authors entail the risks associated with omicron resistance against antibodies and vaccine ineffectiveness on one side, and novel approaches and targets - kinase inhibitors, viral protease inhibitors, phytoconstituents, entry pathways - on the other. The manuscript aims to provide a holistic picture about the Omicron variant, by providing comprehensive discussions related to multiple aspects of the mutated spike variant, which might aid the global researchers and healthcare experts in finding an optimised solution to this pandemic.


Assuntos
COVID-19/fisiopatologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Catepsinas/metabolismo , Receptores ErbB/antagonistas & inibidores , Humanos , Esquemas de Imunização , Imunização Secundária , Fitoterapia/métodos , Plantas Medicinais , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Elementos Estruturais de Proteínas/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Inibidores de Protease Viral/farmacologia , Inibidores de Protease Viral/uso terapêutico
13.
Curr Drug Targets ; 23(15): 1372-1380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35232336

RESUMO

The core of impaired vision in working people suffering from insulin-dependent and noninsulin- dependent diabetes mellitus is diabetic retinopathy (DR). The Wnt Protein Ligands family influences various processes; this ensures the cells are able to interact and co-ordinate various mobile functions, including cell growth, division, survival, apoptosis, migration, and cell destiny. The extracellular Wnt signal activates other signals. It is seen that Wnt pathways play an important role in inflammation, oxidative stress, and angiogenesis. It has been illustrated that the canonically preserved Wnt signaling system has a vital role in the homeostasis of adulthood. Developmental disorders in each of these stages will lead to serious eye problems and eventually blindness. There is, therefore, a need to specifically organize and regulate the growth of ocular tissues. In tissue specification and polarities, axonal exhaust, and maintenance of cells, especially in the central nervous system, Wnt/frizzled pathways play an important role. Thus, Wnt route antagonists may act as have been possible therapeutic options in DR by inhibiting aberrant Wnt signals. Elaborative and continued research in this area will help in the advancement of current knowledge in the field of DR, and eventually, this can lead to the development of new therapeutic approaches.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Adulto , Via de Sinalização Wnt/fisiologia , Retinopatia Diabética/tratamento farmacológico , Proteínas Wnt/metabolismo , Estresse Oxidativo/fisiologia , Inflamação
14.
Molecules ; 27(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35268639

RESUMO

Marine drugs are abundant in number, comprise of a diverse range of structures with corresponding mechanisms of action, and hold promise for the discovery of new and better treatment approaches for the management of several chronic diseases. There are huge reserves of natural marine biological compounds, as 70 percent of the Earth is covered with oceans, indicating a diversity of chemical entities on the planet. The marine ecosystems are a rich source of bioactive products and have been explored for lead drug molecules that have proven to be novel therapeutic targets. Over the last 70 years, many structurally diverse drug products and their secondary metabolites have been isolated from marine sources. The drugs obtained from marine sources have displayed an exceptional potential in the management of a wide array of diseases, ranging from acute to chronic conditions. A beneficial role of marine drugs in human health has been recently proposed. The current review highlights various marine drugs and their compounds and role in the management of chronic diseases such as cancer, diabetes, neurodegenerative diseases, and cardiovascular disorders, which has led to the development of new drug treatment approaches.


Assuntos
Organismos Aquáticos , Produtos Biológicos , Organismos Aquáticos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doença Crônica , Ecossistema , Humanos , Oceanos e Mares
15.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268685

RESUMO

Reactive carbonyl species (RCS) may originate from the oxidation of unsaturated fatty acids and sugar in conditions of pathology. They are known to have high reactivity towards DNA as well as nucleophilic sites of proteins, resulting in cellular dysfunction. It has been considered that various pathological conditions are associated with an increased level of RCS and their reaction products. Thus, regulating the levels of RCS may be associated with the mitigation of various metabolic and neurodegenerative disorders. In order to perform a comprehensive review, various literature databases, including MEDLINE, EMBASE, along with Google Scholar, were utilized to obtain relevant articles. The voluminous review concluded that various synthetic and natural agents are available or in pipeline research that hold tremendous potential to be used as a drug of choice in the therapeutic management of metabolic syndrome, including obesity, dyslipidemia, diabetes, and diabetes-associated complications of atherosclerosis, neuropathy, and nephropathy. From the available data, it may be emphasized that various synthetic agents, such as carnosine and simvastatin, and natural agents, such as polyphenols and terpenoids, can become a drug of choice in the therapeutic management for combating metabolic syndromes that involve RCS in their pathophysiology. Since the RCS are known to regulate the biological processes, future research warrants detailed investigations to decipher the precise mechanism.


Assuntos
Síndrome Metabólica
16.
Environ Sci Pollut Res Int ; 29(19): 29130-29140, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997511

RESUMO

Obesity is a multifaceted disease encompassing deposition of an unnecessary amount of fat which upsurges the possibility of other complications, viz., hypertension and certain type of cancers. Although obesity results from combination of genetic factors, improper diet and inadequate physical exercise also play a major role in its onset. The present study aims at exploring the anti-obesity activity of Crinum latifolia leaf extract in obese rats. The leaves were extracted using hydroalcoholic extraction which was later diluted with water and given to obese rats. The dosing was started from the 4th week (by oral administration of extract of Crinum latifolia (100 mg/kg and 200 mg/kg) and combination of Crinum latifolia leaf extract 200 mg/kg and orlistat 30 mg/kg) till the 10th week. Various angiogenic, antioxidant, biochemical, and inflammatory biomarkers were assessed at the end of the study. The obese symptoms were progressively reduced in treatment groups when compared to disease control groups. The angiogenic parameters and inflammatory parameters were consequently reduced in treatment groups. The oxidative parameters superoxide dismutase (SOD) and catalase were gradually increased, while levels of TBARS were reduced in treatment groups showing antioxidant nature of leaf hydroalcoholic extract. The Crinum latifolia leaf extract possesses anti-obesity properties and therefore can be used as a therapeutic option in the management of obesity.


Assuntos
Crinum , Animais , Antioxidantes/farmacologia , Crinum/química , Obesidade , Estresse Oxidativo , Extratos Vegetais/química , Ratos
17.
Saudi J Biol Sci ; 29(1): 402-410, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35002435

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease which is marked by leukocytes infiltration inside synovial tissue, joints and also inside synovial fluid which causes progressive destruction of joint cartilage. There are numerous genetical and lifestyle factors, responsible for rheumatoid arthritis. One such factor can be cysteine cathepsins, which act as proteolytic enzymes. These proteolytic enzyme gets activated at acidic pH and are found in lysosomes and are also termed as cysteine proteases. These proteases belong to papain family and have their elucidated role in musculoskeletal disorders. Numerous cathepsins have their targeted role in rheumatoid arthritis. These proteases are secreted through various cell types which includes matrix metalloproteases and papain like cysteine proteases. These proteases can potentially lead to bone and cartilage destruction which causes an immune response in case of inflammatory arthritis.

18.
Environ Sci Pollut Res Int ; 29(6): 8109-8125, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34846667

RESUMO

Vasoactive intestinal peptide (VIP) is a neuropeptide that is produced by the lymphoid cells and plays a major role in immunological functions for controlling the homeostasis of the immune system. VIP has been identified as a potent anti-inflammatory factor, in boosting both innate and adaptive immunity. Since December 2019, SARS-Cov-2 was found responsible for the disease COVID-19 which has spread worldwide. No specific therapies or 100% effective vaccines are yet available for the treatment of COVID-19. Drug repositioning may offer a strategy and several drugs have been repurposed, including lopinavir/ritonavir, remdesivir, favipiravir, and tocilizumab. This paper describes the main pharmacological properties of synthetic VIP drug (Aviptadil) which is now under clinical trials. A patented formulation of vasoactive intestinal polypeptide (VIP), named RLF-100 (Aviptadil), was developed and finally got approved for human trials by FDA in 2001 and in European medicines agency in 2005. It was awarded Orphan Drug Designation in 2001 by the US FDA for the treatment of acute respiratory distress syndrome and for the treatment of pulmonary arterial hypertension in 2005. Investigational new drug (IND) licenses for human trials of Aviptadil was guaranteed by both the US FDA and EMEA. Preliminary clinical trials seem to support Aviptadil's benefit. However, such drugs like Aviptadil in COVID-19 patients have peculiar safety profiles. Thus, adequate clinical trials are necessary for these compounds.


Assuntos
COVID-19 , Peptídeo Intestinal Vasoativo , Combinação de Medicamentos , Humanos , Fentolamina , SARS-CoV-2
19.
Crit Rev Food Sci Nutr ; 62(19): 5372-5393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33998910

RESUMO

Rheumatoid arthritis (RA) is a chronic, inflammatory and autoimmune disorder which is mainly characterized by inflammation in joints, bone erosions and cartilaginous destruction that leads to joint dysfunction, deformation, and/or permanent functional impairment. The prevalence of RA is increasing, incurring a considerable burden on healthcare systems globally. The exact etiology of RA is unknown, with various pathways implicated in its pathophysiology. Non-steroidal anti-inflammatory drugs (NSAIDs) including celecoxib, diclofenac and ibuprofen, disease-modifying anti-rheumatic drugs (DMARD) including azathioprine, methotrexate and cyclosporine, biological agents including anakinra, infliximab, and rituximab and immunosuppressants are used for symptomatic relief in patients with RA, but these medications have severe adverse effects such as gastric ulcers, hypertension, hepatotoxicity and renal abnormalities which restrict their use in the treatment of RA; new RA treatments with minimal side-effects are urgently required. There is accumulating evidence that dietary polyphenols may show therapeutic efficacy in RA through their antioxidant, anti-inflammatory, apoptotic, and immunosuppressant activities and modulation of the tumor necrosis factor-α (TNF-α), interleukin (IL)-6, mitogen-activated protein kinase (MAPK), IL-1ß, c-Jun N-terminal kinase (JNK), and nuclear factor κ light-chain-enhancer of activated B cell (NF-κB) pathways. While resveratrol, genistein, carnosol, epigallocatechin gallate, curcumin, kaempferol, and hydroxytyrosol have also been studied for the treatment of RA, the majority of data are derived from animal models. Here, we review the various pathways involved in the development of RA and the preclinical and clinical data supporting polyphenols as potential therapeutic agents in RA patients. Our review highlights that high-quality clinical studies are required to decisively establish the anti-rheumatic efficacy of polyphenolic compounds.


Assuntos
Artrite Reumatoide , Polifenóis , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico
20.
Curr Neuropharmacol ; 20(2): 324-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34030619

RESUMO

BACKGROUND: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation- induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson's disease, which have been contributing to increased proliferation and generation of reactive oxygen species. OBJECTIVE: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson's disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson's disease. METHODS: Published papers were searched in MEDLINE, PubMed, etc., published to date for indepth database collection. RESULTS: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson's disease at the molecular, cellular, or tissue levels. In Parkinson's disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. CONCLUSION: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.


Assuntos
Antioxidantes , Doença de Parkinson , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA