RESUMO
We demonstrate the role of signaling via the glucocorticoid receptor, NR3C1, in differentiation of CD8+ T cell memory. Pharmacological inhibition as well as the short hairpin RNA-mediated knockdown of the receptor hindered memory transition and limited the homeostatic turnover of the activated CD8+ T cells. Dexamethasone exposure of CD8+ T cells expanded during a resolving infection with influenza A virus or a γ-herpesvirus promoted conversion of effector cells into memory cells by modulating cellular metabolism and lowering the accumulation of reactive oxygen species. Reduced reactive oxygen species levels in the responding effector cells upregulated Bcl2 and enhanced survival. The generated virus-specific memory CD8+ T cells were efficiently recalled following challenge of animals with a secondary infection to control it better. The memory-enhancing effect was predominantly evident at low doses of dexamethasone. Therefore, controlled glucocorticoid signaling within the effector CD8+ T cells is crucial for optimal memory differentiation.
Assuntos
Linfócitos T CD8-Positivos , Diferenciação Celular , Dexametasona , Glucocorticoides , Memória Imunológica , Receptores de Glucocorticoides , Animais , Camundongos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Glucocorticoides/farmacologia , Dexametasona/farmacologia , Diferenciação Celular/imunologia , Vírus da Influenza A/imunologia , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Transdução de Sinais/imunologia , Células T de Memória/imunologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Infecções por Herpesviridae/imunologiaRESUMO
Morphine is a potent analgesic opiate used to treat chronic pain, mostly in cancer patients. In addition, it is widely used as a drug of abuse. Due to the continuous rise of morphine-associated addiction, there is an urgent need to develop pre-clinical animal models to understand the behavioural pattern of drug dependence and its withdrawal. Recently, the experimental use of zebrafish has attained significance in behavioural neuroscience studies. The literature on zebrafish is conflicting with regard to morphine withdrawal symptoms. Unfortunately, no single model provides comprehensive details to evaluate zebrafish behaviour on opiate exposure. Further, the current models have various limitations, such as short duration, complexity of phenotypes, intricate quantification, and difficulty in studying withdrawal symptoms. Consequently, a firm standardization of the protocol to understand the influence of opiates on physiological and psychological behaviours is required. In this study, we have tried to overcome the shortcomings associated with the existing models and to optimize the protocols involving an array of parameters. We observed that the administration of morphine caused a significant increase in zebrafish behavioural patterns of spiral movements, circular movements, erratic movements, upper transitions, water surface transitions, wall licking, wall licking with upper transitions, wall licking with lower transitions, absolute angle changes, and time spent in the upper compartment. A decline in the freezing bouts and time spent in the lower compartment were noticed. In essence, this study offers a zebrafish model to comprehensively examine changes in behaviour of animals on opiate dependence and its withdrawal. The present study also reported that in zebrafish, the influence of chronic exposure of morphine modulates key gene targets involved in behaviour, neuroinflammation, and autophagy, which directly or indirectly are associated with morphine addiction in a chronic morphine model.
Assuntos
Morfina , Alcaloides Opiáceos , Animais , Peixe-Zebra , Autofagia , Modelos AnimaisRESUMO
Novel vaccination strategies are crucial to efficiently control tuberculosis, as proposed by the World Health Organization under its flagship program "End TB Strategy." However, the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), particularly in those coinfected with HIV-AIDS, constitutes a major impediment to achieving this goal. We report here a novel vaccination strategy that involves synthesizing a formulation of an immunodominant peptide derived from the Acr1 protein of Mtb. This nanoformulation in addition displayed on the surface a toll-like receptor-2 ligand to offer to target dendritic cells (DCs). Our results showed an efficient uptake of such a concoction by DCs in a predominantly toll-like receptor-2-dependent pathway. These DCs produced elevated levels of nitric oxide, proinflammatory cytokines interleukin-6, interleukin-12, and tumor necrosis factor-α, and upregulated the surface expression of major histocompatibility complex class II molecules as well as costimulatory molecules such as CD80 and CD86. Animals injected with such a vaccine mounted a significantly higher response of effector and memory Th1 cells and Th17 cells. Furthermore, we noticed a reduction in the bacterial load in the lungs of animals challenged with aerosolized live Mtb. Therefore, our findings indicated that the described vaccine triggered protective anti-Mtb immunity to control the tuberculosis infection.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Células Dendríticas , Epitopos , Ligantes , Mycobacterium tuberculosis/metabolismo , Receptor 2 Toll-Like/metabolismo , Tuberculose/prevenção & controle , Tuberculose/microbiologia , CamundongosRESUMO
Here, we describe a combinatorial approach in reverse vaccinology to identify immunogenic class I major histocompatibility complex (MHC) displayed epitopes derived from a morbillivirus named pestes des petits ruminants (PPRV). The protocol describes an in silico prediction of immunogenic epitopes using an IEDB tool. The predicted peptides were further analysed by molecular docking with mouse class I MHC (H-2Kb), to assess their binding affinity, and their immunogenicity was validated, using acellular and cellular assays. Finally, an enumeration of the expanded PPRV-specific CD8+ T cells in infected or immunized mice against the immunogenic peptides was performed ex vivo. Synthetic peptide derivatives from different structural and non-structural proteins of PPRV were used to measure the extent of stabilized H2-Kb, using an ELISA based acellular assay and TAP deficient RMA/s cells. Fluorescently labelled H2-Kb-tetramers were generated by displacing a UV photocleavable conditional ligand with the PPRV-peptides. The resulting reagents were used to identify and enumerate virus-specific CD8+ T cells in immunized or PPRV-infected mice. The combinatorial approach described here could be used to identify immunogenic epitopes of any pathogen, autoantigens, as well as cancer antigens. Graphic abstract: Figure 1.General schematic to identify immunogenic peptides and their stabilization on MHC I molecule.
RESUMO
Galectins play diverse roles in pathophysiology of infectious diseases and cancers. Galectin-3 is one of the most studied family member and the only chimeric type lectin. Many aspects of its biogenesis, range of activities, and the disease-modifying potential particularly during microbial infections are yet to be known. We review our current understanding of these issues and also highlight gaps in better defining the immune modulatory potential of galectin-3 during different stages of host responsiveness when an infection sets in. Additionally, we discuss commonly used strategies to disrupt galectin-3 functions both extracellulalry and intracellularly. Existing and improved novel strategies could help fine-tune immune responses to achieve better prognosis of infectious diseases.
Assuntos
Anti-Infecciosos/imunologia , Doenças Transmissíveis/imunologia , Galectina 3/imunologia , Animais , HumanosRESUMO
Most vertebrates are infected with one or more herpesviruses and remain so for the rest of their lives. The relationship of immunocompetent healthy host with herpesviruses may sometime be considered as harmonious. However, clinically severe diseases can occur when host immunity is compromised due to aging, during some stress response, co-infections or during neoplastic disease conditions. Discord can also occur during iatrogenic immunosuppression used for controlling graft rejection, in some primary genetic immunodeficiencies as well as when the virus infects a non-native host. In this review, we discuss such issues and their influence on host-herpesvirus interaction.
Assuntos
Coinfecção/complicações , Coinfecção/imunologia , Infecções por Herpesviridae/imunologia , Herpesviridae/imunologia , Herpesviridae/patogenicidade , Interações Hospedeiro-Parasita/imunologia , Animais , Doenças Autoimunes/complicações , Doenças Autoimunes/imunologia , Infecções por HIV/complicações , Infecções por HIV/imunologia , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Parasita/fisiologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/virologia , Imunidade Heteróloga , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/imunologia , Malária/complicações , Malária/imunologiaRESUMO
Long-term treatment with the fungal metabolite drug FTY720 (Fingolimod) was shown to be highly effective in controlling viral immunopathological lesions. However, in this report we show that the anti-inflammatory effect of FTY720 in herpes simplex virus-1 (HSV-1) induced ocular inflammation is lost upon the discontinuation of treatment and lesions rapidly recurred. The lesions that developed after FTY720 treatment withdrawal involved mainly Th17 cells rather than Th1 cells explained in part by differential expression of surface CD103, an integrin that permits migration of effector cells to inflammatory sites. The expression of IL-6, a proinflammatory cytokine involved in the generation of Th17 cells, was found to be increased in FTY treated mice as compared to controls and this effect could be abrogated upon administration of neutralizing antibody to IL-6. Furthermore, IL-17RKO mice failed to show the recurrence of stromal keratitis (SK) lesions upon FTY720 withdrawal. These results indicate that approaches such as neutralization of proinflammatory cytokines might be considered along with FTY720 treatment if interruption of drug therapy becomes necessary.
Assuntos
Ceratite Herpética/imunologia , Ceratite Herpética/prevenção & controle , Prevenção Secundária , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/farmacologia , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Cloridrato de Fingolimode , Herpesvirus Humano 1/imunologia , Imunossupressores/administração & dosagem , Imunossupressores/farmacologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/imunologia , Ceratite Herpética/tratamento farmacológico , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Camundongos , Camundongos Knockout , Propilenoglicóis/administração & dosagem , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Recidiva , Esfingosina/administração & dosagem , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
The host response to viruses includes multiple cell types that have regulatory function. Most information focuses on CD4(+) regulatory T cells that express the transcription factor Foxp3(+) (Tregs), which are the topic of this review. We explain how viruses through specific and non-specific means can trigger the response of thymus-derived natural Tregs as well as induce Tregs. The latter derive under appropriate stimulation conditions either from uncommitted precursors or from differentiated cells that convert to become Tregs. We describe instances where Tregs appear to limit the efficacy of antiviral protective immunity and other, perhaps more common, immune-mediated inflammatory conditions, where the Tregs function to limit the extent of tissue damage that occurs during a virus infection. We discuss the controversial roles that Tregs may play in the pathogenesis of human immunodeficiency and hepatitis C virus infections. The issue of plasticity is discussed, as this may result in Tregs losing their protective function when present in inflammatory environments. Finally, we mention approaches used to manipulate Treg numbers and function and assess their current value and likely future success to manage the outcome of virus infection, especially those that are responsible for chronic tissue damage.
Assuntos
Linfócitos T Reguladores/imunologia , Viroses/imunologia , Vírus/imunologia , Animais , Humanos , Imunoterapia Adotiva , Linfócitos T Reguladores/metabolismo , Viroses/metabolismo , Viroses/terapiaRESUMO
A monoclonal antibody against the C-type lectin DEC205 (αDEC205) is an effective vehicle for delivery of antigens to dendritic cells through creation of covalent αDEC205-antigen adducts. These adducts can induce antigen-specific T-cell immune responses or tolerance. We exploit the transpeptidase activity of sortase to install modified peptides and protein-sized antigens onto the heavy chain of αDEC205, including linkers that contain nonnatural amino acids. We demonstrate stoichiometric site-specific labeling on a scale not easily achievable by genetic fusions (49 distinct fusions in this report). We conjugated a biotinylated version of a class I MHC-restricted epitope to unlabeled αDEC205 and monitored epitope generation upon binding of the adduct to dendritic cells. Our results show transfer of αDEC205 heavy chain to the cytoplasm, followed by proteasomal degradation. Introduction of a labile dipeptide linker at the N terminus of a T-cell epitope improves proteasome-dependent class I MHC-restricted peptide cross-presentation when delivered by αDEC205 in vitro and in vivo. We also conjugated αDEC205 with a linker-optimized peptide library of known CD8 T-cell epitopes from the mouse γ-herpes virus 68. Animals immunized with such conjugates displayed a 10-fold reduction in viral load.
Assuntos
Aminoaciltransferases/metabolismo , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos Virais/imunologia , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Epitopos de Linfócito T/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Antígenos CD/química , Antígenos CD/genética , Antígenos Virais/química , Antígenos Virais/genética , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunização , Imunoconjugados/genética , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Engenharia de Proteínas , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Rhadinovirus/genética , Rhadinovirus/imunologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/prevenção & controle , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologiaRESUMO
To study the CD8(+) T cell response against a mouse γ-herpes virus, we generated K(b)-MHV-68-ORF8(604-612)RAG(-/-) CD8(+) T cell receptor transnuclear (TN) mice as a source of virus-specific CD8(+) T cells. K(b)-ORF8-Tet(+) CD8(+) T cells, expanded in the course of a resolving MHV-68 infection, served as a source of nucleus donors. Various in vivo and ex vivo assay criteria demonstrated the fine specificity and functionality of TN cells. TN cells proliferated extensively in response to viral infection, helped control viral burden, and exhibited a phenotype similar to that of endogenous K(b)-ORF8-Tet(+) cells. When compared to OT-1 cells, TN cells displayed distinct properties in response to lymphopenia and cognate antigen stimulation, which may be attributable to the affinity of the TCR expressed by the TN cells. The availability of MHV-68-specific CD8(+) TCR TN mice provides a new tool for investigating aspects of host-pathogen interactions unique to γ-herpes viruses.
Assuntos
Linfócitos T CD8-Positivos/patologia , Epitopos/metabolismo , Glicoproteínas/metabolismo , Antígenos H-2/metabolismo , Infecções por Herpesviridae/fisiopatologia , Receptores de Antígenos de Linfócitos T/metabolismo , Rhadinovirus/metabolismo , Proteínas Virais/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/prevenção & controle , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Fenótipo , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/fisiopatologia , Infecções Tumorais por Vírus/prevenção & controle , Carga Viral/fisiologiaRESUMO
The normal cornea is transparent, which is essential for normal vision, and although the angiogenic factor vascular endothelial growth factor A (VEGF-A) is present in the cornea, its angiogenic activity is impeded by being bound to a soluble form of the VEGF receptor-1 (sVR-1). This report investigates the effect on the balance between VEGF-A and sVR-1 that occurs after ocular infection with HSV, which causes prominent neovascularization, an essential step in the pathogenesis of the vision-impairing lesion, stromal keratitis. We demonstrate that HSV-1 infection causes increased production of VEGF-A but reduces sVR-1 levels, resulting in an imbalance of VEGF-A and sVR-1 levels in ocular tissues. Moreover, the sVR-1 protein made was degraded by the metalloproteinase (MMP) enzymes MMP-2, -7, and -9 produced by infiltrating inflammatory cells that were principally neutrophils. Inhibition of neutrophils, inhibition of sVR-1 breakdown with the MMP inhibitor marimastat, and the provision of exogenous recombinant sVR-1 protein all resulted in reduced angiogenesis. Our results make the novel observation that ocular neovascularization resulting from HSV infection involves a change in the balance between VEGF-A and its soluble inhibitory receptor. Future therapies aimed to increase the production and activity of sVR-1 protein could benefit the management of stromal keratitis, an important cause of human blindness.
Assuntos
Neovascularização da Córnea/imunologia , Neovascularização da Córnea/virologia , Herpes Simples/imunologia , Herpes Simples/virologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Transformada , Neovascularização da Córnea/metabolismo , Feminino , Herpes Simples/metabolismo , Herpesvirus Humano 1/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/imunologia , Distribuição Aleatória , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidoresRESUMO
Controlling chronic immunoinflammatory diseases such as lesions in the eye caused by infection with HSV represents a therapeutic challenge. Since CD4(+) T cells are the primary orchestrators of lesions, targeting activated CD4(+) T cell subsets and increasing the representation of cells that express regulatory function would be a logical therapeutic approach. We show that this outcome can be achieved by therapy, systemic or local, with the lectin family member galectin-9. This molecule, which is a natural product of many cell types, acts as a ligand to the inhibitory molecule TIM-3 (T cell Ig and mucin-3) that is expressed by activated but not naive T cells. We show that 50% or more of T cells in ocular lesions caused by HSV in mice express TIM-3 and that blocking signals from its natural ligand with a mAb results in more severe lesions. More importantly, the provision of additional galectin-9, either systemically or more effectively by local subconjuctival administration, diminished the severity of stromal keratitis lesions as well as the extent of corneal neovascularization. Multiple mechanisms were involved in inhibitory effects. These included apoptosis of the orchestrating effector T cells with consequent reduction of proinflammatory cytokines and an increase in the representation of two separate subtypes of regulatory cells as well as inhibitory effects on the production of molecules involved in neovascularization, an essential component of stromal keratitis pathogenesis. Our results indicate that galectin-9 therapy may represent a useful approach to control HSV-induced lesions, the most common cause of infectious blindness in the Western world.
Assuntos
Galectinas/fisiologia , Herpesvirus Humano 1/imunologia , Receptores Virais/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Animais , Apoptose/imunologia , Células Cultivadas , Chlorocebus aethiops , Neovascularização da Córnea/imunologia , Neovascularização da Córnea/patologia , Neovascularização da Córnea/virologia , Feminino , Galectinas/metabolismo , Técnicas de Introdução de Genes , Receptor Celular 2 do Vírus da Hepatite A , Ceratite Herpética/imunologia , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Virais/biossíntese , Receptores Virais/deficiência , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/virologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/fisiologia , Células VeroRESUMO
Generating and using regulatory T cells (Tregs) to modulate inflammatory disease represents a valuable approach to therapy but has not yet been applied as a means to control virus-induced immunopathological reactions. In this report, we developed a simplified technique that used unfractionated splenocytes as a precursor population and showed that stimulation under optimized conditions for 5 days with solid-phase anti-CD3 monoclonal antibody in the presence of transforming growth factor beta (TGF-beta) and interleukin-2 could induce up to 90% of CD4(+) T cells to become Foxp3(+) and able to mediate suppression in vitro. CD11c(+) dendritic cells were intricately involved in the conversion process and, once modified in the presence of TGF-beta, could convert Foxp3(-) CD4(+) cells into Foxp3(+) CD4(+)cells by producing TGF-beta. The converted cells had undergone cell division, and the majority of them expressed activation markers along with surface molecules that would facilitate their migration into tissue sites. The primary reason for our study was to determine if such in vitro-converted Tregs could be used in vivo to influence the outcome of a virus-induced immunoinflammatory lesion in the eye caused by herpes simplex virus infection. We could show in three separate models of herpetic stromal keratitis that adoptive transfers of in vitro-converted Tregs effectively diminished lesion severity, especially when given in the initial phases of infection. The suppression effect in vivo appeared to be polyspecific. The protocol we have developed could provide a useful additional approach to control virus-induced inflammatory disease.