Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1308341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098865

RESUMO

Genistein (GN) has been highly recommended for its medicinal properties like anticancer, antidiabetic, antihyperlipidemic, antiviral, and antioxidant activities among others. Recently, scientists realized that Genistein is an endocrine disruptor. It is an obesogen that interferes with the endocrine system causing obesity through many mechanisms like inducing adipocyte differentiation, lipid accumulation, and transformation of some stem cells into adipocytes (bone marrow mesenchymal stem cells for example) in vitro. Animal studies show that GN upregulates genes associated with adipogenesis like CCAAT/enhancer binding protein alpha (Cebpα), CCAAT/enhancer binding protein beta (Cebpß), and PPARγ. In silico studies reveal a strong binding affinity for estrogen receptors. All these findings were contingent on concentration and tissues. It is beyond dispute that obesity is one of the most frustrating medical conditions under the sun. The pathophysiology of this disease was first attributed to a high-calorie diet and lack of physical activity. However, studies proved that these two factors are not enough to account for obesity in both children and adults. This mini review highlights how Genistein interaction with the peroxisome proliferator-activated receptor gamma protein can cause obesity.


Assuntos
Adipogenia , Genisteína , Animais , Criança , Humanos , Genisteína/farmacologia , Diferenciação Celular , Obesidade
2.
Front Nutr ; 10: 1232129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781117

RESUMO

Bioflavonoids are natural polyphenolic secondary metabolites that are medicinal. These compounds possess antitumor, cardioprotective, anti-inflammatory, antimicrobial, antiviral, and anti-psoriasis properties to mention a few. Plant species that contain bioflavonoids should be preserved as such. Also, the bioactivity of the bioflavonoids as neutraceutical compounds is compromised following extraction due to their sensitivity to environmental factors like light, pH, and temperature. In other words, the bioflavonoids' shelf-life is affected. Scientists noticed that bioflavonoids have low solubility properties, poor absorption, and low bioavailability following consumption. Researchers came up with methods to encapsulate bioflavonoids in order to circumvent the challenges above and also to mask the unpleasant order these chemicals may have. Besides, scientists cryopreserve plant species that contain bioflavonoids. In this review, we discuss cryopreservation and bioflavonoid microencapsulation focusing mainly on vitrification, slow freezing, and freeze-drying microencapsulation techniques. In addition, we highlight bioflavonoid extraction techniques, medicinal properties, challenges, and future perspectives of cryopreservation and microencapsulation of bioflavonoids. Regardless of the uniqueness of cryopreservation and microencapsulation as methods to preserve bioflavonoid sources and bioflavonoids' bioactivity, there are challenges reported. Freeze-drying technology is costly. Cryoprotectants damage the integrity of plant cells, to say the least. Researchers are working very hard to overcome these challenges. Encapsulating bioflavonoids via coaxial electrospray and then cryopreserving the micro/nanocapsules produced can be very interesting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA