RESUMO
PURPOSE: Surgical scene segmentation is crucial for providing context-aware surgical assistance. Recent studies highlight the significant advantages of hyperspectral imaging (HSI) over traditional RGB data in enhancing segmentation performance. Nevertheless, the current hyperspectral imaging (HSI) datasets remain limited and do not capture the full range of tissue variations encountered clinically. METHODS: Based on a total of 615 hyperspectral images from a total of 16 pigs, featuring porcine organs in different perfusion states, we carry out an exploration of distribution shifts in spectral imaging caused by perfusion alterations. We further introduce a novel strategy to mitigate such distribution shifts, utilizing synthetic data for test-time augmentation. RESULTS: The effect of perfusion changes on state-of-the-art (SOA) segmentation networks depended on the organ and the specific perfusion alteration induced. In the case of the kidney, we observed a performance decline of up to 93% when applying a state-of-the-art (SOA) network under ischemic conditions. Our method improved on the state-of-the-art (SOA) by up to 4.6 times. CONCLUSION: Given its potential wide-ranging relevance to diverse pathologies, our approach may serve as a pivotal tool to enhance neural network generalization within the realm of spectral imaging.
Assuntos
Imageamento Hiperespectral , Animais , Suínos , Imageamento Hiperespectral/métodos , Rim/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodosRESUMO
Laparoscopic surgery has evolved as a key technique for cancer diagnosis and therapy. While characterization of the tissue perfusion is crucial in various procedures, such as partial nephrectomy, doing so by means of visual inspection remains highly challenging. We developed a laparoscopic real-time multispectral imaging system featuring a compact and lightweight multispectral camera and the possibility to complement the conventional surgical view of the patient with functional information at a video rate of 25 Hz. To enable contrast agent-free ischemia monitoring during laparoscopic partial nephrectomy, we phrase the problem of ischemia detection as an out-of-distribution detection problem that does not rely on data from any other patient and uses an ensemble of invertible neural networks at its core. An in-human trial demonstrates the feasibility of our approach and highlights the potential of spectral imaging combined with advanced deep learning-based analysis tools for fast, efficient, reliable, and safe functional laparoscopic imaging.
Assuntos
Meios de Contraste , Laparoscopia , Humanos , Nefrectomia/métodos , Redes Neurais de Computação , Laparoscopia/métodos , IsquemiaRESUMO
BACKGROUND: Small bowel malperfusion (SBM) can cause high morbidity and severe surgical consequences. However, there is no standardized objective measuring tool for the quantification of SBM. Indocyanine green (ICG) imaging can be used for visualization, but lacks standardization and objectivity. Hyperspectral imaging (HSI) as a newly emerging technology in medicine might present advantages over conventional ICG fluorescence or in combination with it. METHODS: HSI baseline data from physiological small bowel, avascular small bowel and small bowel after intravenous application of ICG was recorded in a total number of 54 in-vivo pig models. Visualizations of avascular small bowel after mesotomy were compared between HSI only (1), ICG-augmented HSI (IA-HSI) (2), clinical evaluation through the eyes of the surgeon (3) and conventional ICG imaging (4). The primary research focus was the localization of resection borders as suggested by each of the four methods. Distances between these borders were measured and histological samples were obtained from the regions in between in order to quantify necrotic changes 6 h after mesotomy for every region. RESULTS: StO2 images (1) were capable of visualizing areas of physiological perfusion and areas of clearly impaired perfusion. However, exact borders where physiological perfusion started to decrease could not be clearly identified. Instead, IA-HSI (2) suggested a sharp-resection line where StO2 values started to decrease. Clinical evaluation (3) suggested a resection line 23 mm (±7 mm) and conventional ICG imaging (4) even suggested a resection line 53 mm (±13 mm) closer towards the malperfused region. Histopathological evaluation of the region that was sufficiently perfused only according to conventional ICG (R3) already revealed a significant increase in pre-necrotic changes in 27% (±9%) of surface area. Therefore, conventional ICG seems less sensitive than IA-HSI with regards to detection of insufficient tissue perfusion. CONCLUSIONS: In this experimental animal study, IA-HSI (2) was superior for the visualization of segmental SBM compared to conventional HSI imaging (1), clinical evaluation (3) or conventional ICG imaging (4) regarding histopathological safety. ICG application caused visual artifacts in the StO2 values of the HSI camera as values significantly increase. This is caused by optical properties of systemic ICG and does not resemble a true increase in oxygenation levels. However, this empirical finding can be used to visualize segmental SBM utilizing ICG as contrast agent in an approach for IA-HSI. Clinical applicability and relevance will have to be explored in clinical trials. LEVEL OF EVIDENCE: Not applicable. Translational animal science. Original article.
Assuntos
Imageamento Hiperespectral , Verde de Indocianina , Animais , Suínos , Perfusão , Intestinos , Meios de ContrasteRESUMO
BACKGROUND: Intraoperative imaging assists surgeons during minimally invasive procedures. Hyperspectral imaging (HSI) is a noninvasive and noncontact optical technique with great diagnostic potential in medicine. The combination with artificial intelligence (AI) approaches to analyze HSI data is called intelligent HSI in this article. OBJECTIVE: What are the medical applications and advantages of intelligent HSI for minimally invasive visceral surgery? MATERIAL AND METHODS: Within various clinical studies HSI data from multiple in vivo tissue types and oncological resections were acquired using an HSI camera system. Different AI algorithms were evaluated for detection and discrimination of organs, risk structures and tumors. RESULTS: In an experimental animal study 20 different organs could be differentiated with high precision (>â¯95%) using AI. In vivo, the parathyroid glands could be discriminated from surrounding tissue with an F1 score of 47% and sensitivity of 75%, and the bile duct with an F1 score of 79% and sensitivity of 90%. Furthermore, ex vivo tumor tissue could be successfully detected with an area under the receiver operating characteristic (ROC) curve (AUC) larger than 0.91. DISCUSSION: This study demonstrates that intelligent HSI can automatically and accurately detect different tissue types. Despite great progress in the last decade intelligent HSI still has limitations. Thus, accurate AI algorithms that are easier to understand for the user and an extensive standardized and continuously growing database are needed. Further clinical studies should support the various medical applications and lead to the adoption of intelligent HSI in the clinical routine practice.
Assuntos
Inteligência Artificial , Imageamento Hiperespectral , Algoritmos , Diagnóstico por Imagem/métodos , Procedimentos Cirúrgicos Minimamente InvasivosRESUMO
Visual discrimination of tissue during surgery can be challenging since different tissues appear similar to the human eye. Hyperspectral imaging (HSI) removes this limitation by associating each pixel with high-dimensional spectral information. While previous work has shown its general potential to discriminate tissue, clinical translation has been limited due to the method's current lack of robustness and generalizability. Specifically, the scientific community is lacking a comprehensive spectral tissue atlas, and it is unknown whether variability in spectral reflectance is primarily explained by tissue type rather than the recorded individual or specific acquisition conditions. The contribution of this work is threefold: (1) Based on an annotated medical HSI data set (9059 images from 46 pigs), we present a tissue atlas featuring spectral fingerprints of 20 different porcine organs and tissue types. (2) Using the principle of mixed model analysis, we show that the greatest source of variability related to HSI images is the organ under observation. (3) We show that HSI-based fully-automatic tissue differentiation of 20 organ classes with deep neural networks is possible with high accuracy (> 95%). We conclude from our study that automatic tissue discrimination based on HSI data is feasible and could thus aid in intraoperative decisionmaking and pave the way for context-aware computer-assisted surgery systems and autonomous robotics.
Assuntos
Imageamento Hiperespectral , Aprendizado de Máquina , Animais , Redes Neurais de Computação , SuínosRESUMO
Semantic image segmentation is an important prerequisite for context-awareness and autonomous robotics in surgery. The state of the art has focused on conventional RGB video data acquired during minimally invasive surgery, but full-scene semantic segmentation based on spectral imaging data and obtained during open surgery has received almost no attention to date. To address this gap in the literature, we are investigating the following research questions based on hyperspectral imaging (HSI) data of pigs acquired in an open surgery setting: (1) What is an adequate representation of HSI data for neural network-based fully automated organ segmentation, especially with respect to the spatial granularity of the data (pixels vs. superpixels vs. patches vs. full images)? (2) Is there a benefit of using HSI data compared to other modalities, namely RGB data and processed HSI data (e.g. tissue parameters like oxygenation), when performing semantic organ segmentation? According to a comprehensive validation study based on 506 HSI images from 20 pigs, annotated with a total of 19 classes, deep learning-based segmentation performance increases - consistently across modalities - with the spatial context of the input data. Unprocessed HSI data offers an advantage over RGB data or processed data from the camera provider, with the advantage increasing with decreasing size of the input to the neural network. Maximum performance (HSI applied to whole images) yielded a mean DSC of 0.90 ((standard deviation (SD)) 0.04), which is in the range of the inter-rater variability (DSC of 0.89 ((standard deviation (SD)) 0.07)). We conclude that HSI could become a powerful image modality for fully-automatic surgical scene understanding with many advantages over traditional imaging, including the ability to recover additional functional tissue information. Our code and pre-trained models are available at https://github.com/IMSY-DKFZ/htc.
Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Animais , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Semântica , SuínosRESUMO
Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.
Assuntos
Colo Sigmoide/cirurgia , Proctocolectomia Restauradora/instrumentação , Reto/cirurgia , Sistemas de Navegação Cirúrgica , Ciência de Dados , Humanos , LaparoscopiaRESUMO
PURPOSE: Live intra-operative functional imaging has multiple potential clinical applications, such as localization of ischemia, assessment of organ transplantation success and perfusion monitoring. Recent research has shown that live monitoring of functional tissue properties, such as tissue oxygenation and blood volume fraction, is possible using multispectral imaging in laparoscopic surgery. While the illuminant spectrum is typically kept constant in laparoscopic surgery and can thus be estimated from preoperative calibration images, a key challenge in open surgery originates from the dynamic changes of lighting conditions. METHODS: The present paper addresses this challenge with a novel approach to light source calibration based on specular highlight analysis. It involves the acquisition of low-exposure time images serving as a basis for recovering the illuminant spectrum from pixels that contain a dominant specular reflectance component. RESULTS: Comprehensive in silico and in vivo experiments with a range of different light sources demonstrate that our approach enables an accurate and robust recovery of the illuminant spectrum in the field of view of the camera, which results in reduced errors with respect to the estimation of functional tissue properties. Our approach further outperforms state-of-the-art methods proposed in the field of computer vision. CONCLUSION: Our results suggest that low-exposure multispectral images are well suited for light source calibration via specular highlight analysis. This work thus provides an important first step toward live functional imaging in open surgery.