Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37376052

RESUMO

Lipid nanoparticles (LNPs) have evolved rapidly as promising delivery systems for oligonucleotides, including siRNAs. However, current clinical LNP formulations show high liver accumulation after systemic administration, which is unfavorable for the treatment of extrahepatic diseases, such as hematological disorders. Here we describe the specific targeting of LNPs to hematopoietic progenitor cells in the bone marrow. Functionalization of the LNPs with a modified Leu-Asp-Val tripeptide, a specific ligand for the very-late antigen 4 resulted in an improved uptake and functional siRNA delivery in patient-derived leukemia cells when compared to their non-targeted counterparts. Moreover, surface-modified LNPs displayed significantly improved bone-marrow accumulation and retention. These were associated with increased LNP uptake by immature hematopoietic progenitor cells, also suggesting similarly improved uptake by leukemic stem cells. In summary, we describe an LNP formulation that successfully targets the bone marrow including leukemic stem cells. Our results thereby support the further development of LNPs for targeted therapeutic interventions for leukemia and other hematological disorders.

2.
Biochim Biophys Acta Gen Subj ; 1865(4): 129763, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33065252

RESUMO

Extracellular vesicles (EVs) are nanoparticles which are released by cells from all three domains of life: Archaea, Bacteria and Eukarya. They can mediate cell-cell communication by transferring cargoes such as proteins and nucleic acids between cells. EVs receive great interest in both academia and industry as they have the potential to be natural drug carriers or vaccine candidates. However, limitations to their clinical translation exist as efficient isolation, loading, labelling and surface-engineering methods are lacking. In this article, we investigate a 'post-insertion' approach, which is commonly used in the functionalization of liposomes in the pharmaceutical field, on two different EV types: mammalian cell-derived EVs and bacteria-derived EVs. We aimed to find an easy and flexible approach to functionalize EVs, thereby improving the labelling, isolation, and surface-engineering.


Assuntos
Bactérias/química , Membrana Externa Bacteriana/química , Vesículas Extracelulares/química , Imuno-Histoquímica/métodos , Animais , Membrana Externa Bacteriana/ultraestrutura , Western Blotting/métodos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida/métodos , Vesículas Extracelulares/ultraestrutura , Citometria de Fluxo/métodos , Células HEK293 , Humanos , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Propriedades de Superfície
3.
PLoS Genet ; 10(5): e1004371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24875531

RESUMO

Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.


Assuntos
Anemia de Diamond-Blackfan/genética , Doenças da Medula Óssea/genética , Insuficiência Pancreática Exócrina/genética , Insulina/metabolismo , Lipomatose/genética , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Anemia de Diamond-Blackfan/patologia , Animais , Autofagia/genética , Doenças da Medula Óssea/patologia , Eritropoese/genética , Insuficiência Pancreática Exócrina/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Insulina/genética , Lipomatose/patologia , Mutação , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Ribossômicas/genética , Síndrome de Shwachman-Diamond , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA