Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 213(11): 1907-20, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20472778

RESUMO

In nature, cockroaches run rapidly over complex terrain such as leaf litter. These substrates are rarely rigid, and are frequently very compliant. Whether and how compliant surfaces change the dynamics of rapid insect locomotion has not been investigated to date largely due to experimental limitations. We tested the hypothesis that a running insect can maintain average forward speed over an extremely soft elastic surface (10 N m(-1)) equal to 2/3 of its virtual leg stiffness (15 N m(-1)). Cockroaches Blaberus discoidalis were able to maintain forward speed (mean +/- s.e.m., 37.2+/-0.6 cm s(-1) rigid surface versus 38.0+/-0.7 cm s(-1) elastic surface; repeated-measures ANOVA, P=0.45). Step frequency was unchanged (24.5+/-0.6 steps s(-1) rigid surface versus 24.7+/-0.4 steps s(-1) elastic surface; P=0.54). To uncover the mechanism, we measured the animal's centre of mass (COM) dynamics using a novel accelerometer backpack, attached very near the COM. Vertical acceleration of the COM on the elastic surface had a smaller peak-to-peak amplitude (11.50+/-0.33 m s(-2), rigid versus 7.7+/-0.14 m s(-2), elastic; P=0.04). The observed change in COM acceleration over an elastic surface required no change in effective stiffness when duty factor and ground stiffness were taken into account. Lowering of the COM towards the elastic surface caused the swing legs to land earlier, increasing the period of double support. A feedforward control model was consistent with the experimental results and provided one plausible, simple explanation of the mechanism.


Assuntos
Baratas/fisiologia , Animais , Fenômenos Biomecânicos , Elasticidade , Feminino , Masculino , Modelos Biológicos , Corrida
2.
Biol Cybern ; 91(2): 76-90, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15322851

RESUMO

We develop a simple hexapedal model for the dynamics of insect locomotion in the horizontal plane. Each leg is a linear spring endowed with two inputs, controlling force-free length and "hip" position, in a stereotypical feedforward pattern. These represent, in a simplified manner, the effects of neurally activated muscles in the animal and are determined from measured foot force and kinematic body data for cockroaches. We solve the three-degree-of-freedom Newtonian equations for coupled translation-yawing motions in response to the inputs and determine branches of periodic gaits over the animal's typical speed range. We demonstrate a close quantitative match to experiments and find both stable and unstable motions, depending upon input protocols. Our hexapedal model highlights the importance of stability in evaluating effective locomotor performance and in particular suggests that sprawled-posture runners with large lateral and opposing leg forces can be stable in the horizontal plane over a range of speeds, with minimal sensory feedback from the environment. Fore-aft force patterns characteristic of upright-posture runners can cause instability in the model. We find that stability can constrain fundamental gait parameters: our model is stable only when stride length and frequency match the patterns measured in the animal. Stability is not compromised by large joint moments during running because ground reaction forces tend to align along the leg and be directed toward the center of mass. Legs radiating in all directions and capable of generating large moments may allow very rapid turning and extraordinary maneuvers. Our results further weaken the hypothesis that polypedal, sprawled-posture locomotion with large lateral and opposing leg forces is less effective than upright posture running with fewer legs.


Assuntos
Extremidades/fisiologia , Marcha/fisiologia , Insetos/fisiologia , Locomoção/fisiologia , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Modelos Animais , Modelos Neurológicos , Contração Muscular/fisiologia , Músculos/fisiologia , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA