Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 12(10): 2532-2543, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29950702

RESUMO

The Deepwater Horizon (DWH) blowout resulted in the deposition to the seafloor of up to 4.9% of 200 million gallons of oil released into the Gulf of Mexico. The petroleum hydrocarbon concentrations near the wellhead were high immediately after the spill, but returned to background levels a few years after the spill. Microbial communities in the seafloor are thought to be responsible for the degradation of hydrocarbons, however, our knowledge is primarily based upon gene diversity surveys and hydrocarbon concentration in field sediment samples. Here, we investigated the oil degradation potential and changes in bacterial community by amending seafloor sediment collected near the DWH site with crude oil and both oil and Corexit dispersant. Polycyclic aromatic hydrocarbons were rapidly degraded during the first 30 days of incubation, while alkanes were degraded more slowly. With the degradation of hydrocarbons, the relative abundances of Colwelliaceae, Alteromonadaceae, Methylococales, Alcanivorax, Bacteriovorax, and Phaeobacter increased remarkably. However, the abundances of oil-degrading bacteria changed with oil chemistry. Colwelliaceae decreased with increasing oil degradation, whereas Alcanivorax and Methylococcales increased considerably. We assembled seven genomes from the metagenome, including ones belonging to Colwellia, Alteromonadaceae, Rhodobacteraceae, the newly reported genus Woeseia, and candidate phylum NC10, all of which possess a repertoire of genes for hydrocarbon degradation. Moreover, genes related to hydrocarbon degradation were highly enriched in the oiled treatment, suggesting that the hydrocarbons were biodegraded, and that the indigenous microflora have a remarkable potential for the natural attenuation of spilled oil in the deep-sea surface sediment.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Poluição por Petróleo/análise , Petróleo/metabolismo , Proteobactérias/classificação , Poluentes Químicos da Água/metabolismo , Golfo do México , Louisiana , Proteobactérias/metabolismo , Poluentes Químicos da Água/análise
2.
Nat Microbiol ; 1(7): 16057, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27572965

RESUMO

The Deepwater Horizon blowout in the Gulf of Mexico in 2010, one of the largest marine oil spills(1), changed bacterial communities in the water column and sediment as they responded to complex hydrocarbon mixtures(2-4). Shifts in community composition have been correlated to the microbial degradation and use of hydrocarbons(2,5,6), but the full genetic potential and taxon-specific metabolisms of bacterial hydrocarbon degraders remain unresolved. Here, we have reconstructed draft genomes of marine bacteria enriched from sea surface and deep plume waters of the spill that assimilate alkane and polycyclic aromatic hydrocarbons during stable-isotope probing experiments, and we identify genes of hydrocarbon degradation pathways. Alkane degradation genes were ubiquitous in the assembled genomes. Marinobacter was enriched with n-hexadecane, and uncultured Alpha- and Gammaproteobacteria populations were enriched in the polycyclic-aromatic-hydrocarbon-degrading communities and contained a broad gene set for degrading phenanthrene and naphthalene. The repertoire of polycyclic aromatic hydrocarbon use varied among different bacterial taxa and the combined capabilities of the microbial community exceeded those of its individual components, indicating that the degradation of complex hydrocarbon mixtures requires the non-redundant capabilities of a complex oil-degrading community.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Redes e Vias Metabólicas , Poluição por Petróleo , Alcanos/metabolismo , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Biodegradação Ambiental , Biodiversidade , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Genoma Bacteriano , Golfo do México , Marinobacter/genética , Marinobacter/fisiologia , Redes e Vias Metabólicas/genética , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Ribossômico 16S , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA