Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 707: 149785, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38503150

RESUMO

Melanoma, originating from melanocytes, is a highly aggressive tumor. Tyrosinase is involved in melanin production in melanocytes, and its overexpression is noted in malignant melanomas. However, the role of tyrosinase in melanomas remains unclear. Therefore, this study aimed to evaluate the potential functions of tyrosinase in the human melanoma cell line A375. The expression level of tyrosinase in A375 cells was undetectable. However, markedly increased expression level was observed in the mouse melanoma cell line B16F10 and the human melanoma cell line WM266-4. Subsequently, we investigated the effect of ectopic tyrosinase expression on A375 cell motility using wound-healing assay. The overexpression of tyrosinase resulted in enhanced cell migration in both stable and transient tyrosinase expression cells. The levels of filamentous actin were decreased in tyrosinase-expressing A375 cells, suggesting that tyrosinase regulates cell motility by modulating actin polymerization. Histidine residues in tyrosinase are important for its enzymatic activity for synthesizing melanin. Substitution of these histidine residues to alanine residues mitigated the promotion of tyrosinase-induced A375 cell metastasis. Furthermore, melanin treatment enhanced A375 cell metastasis and phosphorylation of Cofilin. Thus, our findings suggest that tyrosinase increases the migration of A375 cells by regulating actin polymerization through its enzymatic activity.


Assuntos
Melaninas , Melanoma Experimental , Animais , Camundongos , Humanos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Oxigenases de Função Mista/metabolismo , Actinas/metabolismo , Histidina/metabolismo , Melanoma Experimental/patologia , Linhagem Celular Tumoral , Melanócitos/metabolismo
2.
J Virol ; 96(18): e0068422, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36073924

RESUMO

During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection, lytic-related proteins are synthesized, viral genomes are replicated as a tandemly repeated form, and subsequently, capsids are assembled. The herpesvirus terminase complex is proposed to package an appropriate genome unit into an immature capsid, by cleavage of terminal repeats (TRs) flanking tandemly linked viral genomes. Although the mechanism of capsid formation in alpha- and betaherpesviruses are well-studied, in KSHV, it remains largely unknown. It has been proposed that KSHV ORF7 is a terminase subunit, and ORF7 harbors a zinc-finger motif, which is conserved among other herpesviral terminases. However, the biological significance of ORF7 is unknown. We previously reported that KSHV ORF17 is essential for the cleavage of inner scaffold proteins in capsid maturation, and ORF17 knockout (KO) induced capsid formation arrest between the procapsid and B-capsid stages. However, it remains unknown if ORF7-mediated viral DNA cleavage occurs before or after ORF17-mediated scaffold collapse. We analyzed the role of ORF7 during capsid formation using ORF7-KO-, ORF7&17-double-KO (DKO)-, and ORF7-zinc-finger motif mutant-KSHVs. We found that ORF7 acted after ORF17 in the capsid formation process, and ORF7-KO-KSHV produced incomplete capsids harboring nonspherical internal structures, which resembled soccer balls. This soccer ball-like capsid was formed after ORF17-mediated B-capsid formation. Moreover, ORF7-KO- and zinc-finger motif KO-KSHV failed to appropriately cleave the TR on replicated genome and had a defect in virion production. Interestingly, ORF17 function was also necessary for TR cleavage. Thus, our data revealed ORF7 contributes to terminase-mediated viral genome cleavage and capsid formation. IMPORTANCE In herpesviral capsid formation, the viral terminase complex cleaves the TR sites on newly synthesized tandemly repeating genomes and inserts an appropriate genomic unit into an immature capsid. Herpes simplex virus 1 (HSV-1) UL28 is a subunit of the terminase complex that cleaves the replicated viral genome. However, the physiological importance of the UL28 homolog, KSHV ORF7, remains poorly understood. Here, using several ORF7-deficient KSHVs, we found that ORF7 acted after ORF17-mediated scaffold collapse in the capsid maturation process. Moreover, ORF7 and its zinc-finger motif were essential for both cleavage of TR sites on the KSHV genome and virus production. ORF7-deficient KSHVs produced incomplete capsids that resembled a soccer ball. To our knowledge, this is the first report showing ORF7-KO-induced soccer ball-like capsids production and ORF7 function in the KSHV capsid assembly process. Our findings provide insights into the role of ORF7 in KSHV capsid formation.


Assuntos
Capsídeo , Genoma Viral , Infecções por Herpesviridae , Herpesvirus Humano 8 , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Humanos , Dedos de Zinco
3.
Oncol Rep ; 47(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35014678

RESUMO

Primary effusion lymphoma (PEL) is defined as a rare subtype of non­Hodgkin's B cell lymphoma, which is caused by Kaposi's sarcoma­associated herpesvirus (KSHV) in immunosuppressed patients. PEL is an aggressive type of lymphoma and is frequently resistant to conventional chemotherapeutics. Therefore, the discovery of novel drug candidates for the treatment of PEL is of utmost importance. In order to discover potential novel anti­tumor compounds against PEL, the authors previously developed a pyrrolidinium­type fullerene derivative, 1,1,1',1'­tetramethyl [60]fullerenodipyrrolidinium diiodide (derivative #1), which induced the apoptosis of PEL cells via caspase­9 activation. In the present study, the growth inhibitory effects of pyrrolidinium­type (derivatives #1 and #2), pyridinium­type (derivatives #3 and #5 to #9) and anilinium­type fullerene derivatives (derivative #4) against PEL cells were evaluated. This analysis revealed a pyridinium­type derivative (derivative #5; 3­â€‹5'­(etho xycarbonyl)­1',5'­dihydro­2'H­[5,6]fullereno­C60­Ih­[1,9­c]pyrrol­2'­yl]­1­methylpyridinium iodide), which exhibited antitumor activity against PEL cells via the downregulation of Wnt/ß­catenin signaling. Derivative #5 suppressed the viability of KSHV­infected PEL cells compared with KSHV­uninfected B­lymphoma cells. Furthermore, derivative #5 induced the destabilization of ß­catenin and suppressed ß­catenin­TCF4 transcriptional activity in PEL cells. It is known that the constitutive activation of Wnt/ß­catenin signaling is essential for the growth of KSHV­infected cells. The Wnt/ß­catenin activation in KSHV­infected cells is mediated by KSHV latency­associated nuclear antigen (LANA). The data demonstrated that derivative #5 increased ß­catenin phosphorylation, which resulted in ß­catenin polyubiquitination and subsequent degradation. Thus, derivative #5 overcame LANA­mediated ß­catenin stabilization. Furthermore, the administration of derivative #5 suppressed the development of PEL cells in the ascites of SCID mice with tumor xenografts derived from PEL cells. On the whole, these findings provide evidence that the pyridinium­type fullerene derivative #5 exhibits antitumor activity against PEL cells in vitro and in vivo. Thus, derivative #5 may be utilized as a novel therapeutic agent for the treatment of PEL.


Assuntos
Antineoplásicos/farmacologia , Fulerenos/farmacologia , Herpesvirus Humano 8/efeitos dos fármacos , Linfoma de Efusão Primária/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Camundongos , Compostos de Piridínio/farmacologia
4.
Microorganisms ; 9(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071710

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman disease. Although capsid formation and maturation in the alpha-herpesvirus herpes simplex virus 1 are well understood, these processes in KSHV remain unknown. The KSHV ORF7, encoding the viral terminase (DNA cleavage and packaging protein), is thought to contribute to capsid formation; however, functional information is lacking. Here, we investigated the role of ORF7 during KSHV lytic replication by generating two types of ORF7 knock-out (KO) mutants (frameshift-induced and stop codon-induced ORF7 deficiency), KSHV BAC16, and its revertants. The results revealed that both ORF7-KO KSHVs showed significantly reduced viral production but there was no effect on lytic gene expression and viral genome replication. Complementation assays showed virus production from cells harboring ORF7-KO KSHV could be recovered by ORF7 overexpression. Additionally, exogenously expressed ORF7 partially induced nuclear relocalization of the other terminase components, ORF29 and ORF67.5. ORF7 interacted with both ORF29 and ORF67.5, whereas ORF29 and ORF67.5 failed to interact with each other, suggesting that ORF7 functions as a hub molecule in the KSHV terminase complex for interactions between ORF29 and ORF67.5. These findings indicate that ORF7 plays a key role in viral replication, as a component of terminase.

5.
Cell Rep ; 34(9): 108777, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657370

RESUMO

Adult mammalian central nervous system (CNS) trauma interrupts neural networks and, because axonal regeneration is minimal, neurological deficits persist. Repair via axonal growth is limited by extracellular inhibitors and cell-autonomous factors. Based on results from a screen in vitro, we evaluate nearly 400 genes through a large-scale in vivo regeneration screen. Suppression of 40 genes using viral-driven short hairpin RNAs (shRNAs) promotes retinal ganglion cell (RGC) axon regeneration after optic nerve crush (ONC), and most are validated by separate CRISPR-Cas9 editing experiments. Expression of these axon-regeneration-suppressing genes is not significantly altered by axotomy. Among regeneration-limiting genes, loss of the interleukin 22 (IL-22) cytokine allows an early, yet transient, inflammatory response in the retina after injury. Reduced IL-22 drives concurrent activation of signal transducer and activator of transcription 3 (Stat3) and dual leucine zipper kinase (DLK) pathways and upregulation of multiple neuron-intrinsic regeneration-associated genes (RAGs). Including IL-22, our screen identifies dozens of genes that limit CNS regeneration. Suppression of these genes in the context of axonal damage could support improved neural repair.


Assuntos
Regeneração Nervosa/genética , Neurogênese/genética , Traumatismos do Nervo Óptico/genética , Nervo Óptico/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Sistemas CRISPR-Cas , Dependovirus/genética , Feminino , Edição de Genes , Regulação da Expressão Gênica , Estudos de Associação Genética , Células HEK293 , Humanos , Interleucinas/genética , Interleucinas/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Interleucina 22
6.
J Neurosci ; 39(28): 5562-5580, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31061088

RESUMO

We previously identified that ngr1 allele deletion limits the severity of experimental autoimmune encephalomyelitis (EAE) by preserving axonal integrity. However, whether this favorable outcome observed in EAE is a consequence of an abrogated neuronal-specific pathophysiological mechanism, is yet to be defined. Here we show that, Cre-loxP-mediated neuron-specific deletion of ngr1 preserved axonal integrity, whereas its re-expression in ngr1-/- female mice potentiated EAE-axonopathy. As a corollary, myelin integrity was preserved under Cre deletion in ngr1flx/flx , retinal ganglion cell axons whereas, significant demyelination occurred in the ngr1-/- optic nerves following the re-introduction of NgR1. Moreover, Cre-loxP-mediated axon-specific deletion of ngr1 in ngr1flx/flx mice also demonstrated efficient anterograde transport of fluorescently-labeled ChTxß in the optic nerves of EAE-induced mice. However, the anterograde transport of ChTxß displayed accumulation in optic nerve degenerative axons of EAE-induced ngr1-/- mice, when NgR1 was reintroduced but was shown to be transported efficiently in the contralateral non- recombinant adeno-associated virus serotype 2-transduced optic nerves of these mutant mice. We further identified that the interaction between the axonal motor protein, Kinesin-1 and collapsin response mediator protein 2 (CRMP2) was unchanged upon Cre deletion of ngr1 Whereas, this Kinesin-1/CRMP2 association was reduced when NgR1 was re-expressed in the ngr1-/- optic nerves. Our data suggest that NgR1 governs axonal degeneration in the context of inflammatory-mediated demyelination through the phosphorylation of CRMP2 by stalling axonal vesicular transport. Moreover, axon-specific deletion of ngr1 preserves axonal transport mechanisms, blunting the induction of inflammatory demyelination and limiting the severity of EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is commonly induced by aberrant immune-mediated destruction of the protective sheath of nerve fibers (known as myelin). However, it has been shown that MS lesions do not only consist of this disease pattern, exhibiting heterogeneity with continual destruction of axons. Here we investigate how neuronal NgR1 can drive inflammatory-mediated axonal degeneration and demyelination within the optic nerve by analyzing its downstream signaling events that govern axonal vesicular transport. We identify that abrogating the NgR1/pCRMP2 signaling cascade can maintain Kinesin-1-dependent anterograde axonal transport to limit inflammatory-mediated axonopathy and demyelination. The ability to differentiate between primary and secondary mechanisms of axonal degeneration may uncover therapeutic strategies to limit axonal damage and progressive MS.


Assuntos
Transporte Axonal , Encefalomielite Autoimune Experimental/metabolismo , Bainha de Mielina/metabolismo , Receptor Nogo 1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Axônios/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cinesinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Receptor Nogo 1/genética , Células Ganglionares da Retina/metabolismo , Transdução de Sinais
7.
Nat Commun ; 9(1): 3419, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143638

RESUMO

Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons, requires the matching of neural identity to the anatomical site of injury, and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery.


Assuntos
Células-Tronco Neurais/citologia , Regeneração da Medula Espinal/fisiologia , Animais , Axônios/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Células-Tronco Neurais/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco
8.
Sci Signal ; 11(524)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615517

RESUMO

Axonal growth after traumatic spinal cord injury is limited by endogenous inhibitors, selective blockade of which promotes partial neurological recovery. The partial repair phenotypes suggest that compensatory pathways limit improvement. Gene expression profiles of mice deficient in Ngr1, which encodes a receptor for myelin-associated inhibitors of axonal regeneration such as Nogo, revealed that trauma increased the mRNA expression of ORL1, which encodes the receptor for the opioid-related peptide nociceptin. Endogenous and overexpressed ORL1 coimmunoprecipitated with immature NgR1 protein, and ORL1 enhanced the O-linked glycosylation and surface expression of NgR1 in HEK293T and Neuro2A cells and primary neurons. ORL1 overexpression inhibited cortical neuron axon regeneration independently of NgR1. Furthermore, regeneration was inhibited by an ORL1 agonist and enhanced by the ORL1 antagonist J113397 through a ROCK-dependent mechanism. Mice treated with J113397 after dorsal hemisection of the mid-thoracic spinal cord recovered greater locomotor function and exhibited lumbar raphespinal axon sprouting. These effects were further enhanced by combined Ngr1 deletion and ORL1 inhibition. Thus, ORL1 limits neural repair directly and indirectly by enhancing NgR1 maturation, and ORL1 antagonists enhance recovery from traumatic CNS injuries in wild-type and Ngr1 null mice.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Receptor Nogo 1/metabolismo , Receptores Opioides/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Axônios/metabolismo , Células COS , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Receptor Nogo 1/genética , Peptídeos Opioides/farmacologia , Receptores Opioides/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Receptor de Nociceptina , Nociceptina
9.
J Biol Chem ; 292(47): 19392-19399, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28986450

RESUMO

Signal-transducing adaptor family member-2 (STAP-2) is an adaptor protein that regulates various intracellular signaling pathways and promotes tumorigenesis in melanoma and breast cancer cells. However, the contribution of STAP-2 to the behavior of other types of cancer cells is unclear. Here, we show that STAP-2 promotes tumorigenesis of prostate cancer cells through up-regulation of EGF receptor (EGFR) signaling. Tumor growth of a prostate cancer cell line, DU145, was strongly decreased by STAP-2 knockdown. EGF-induced gene expression and phosphorylation of AKT, ERK, and STAT3 were significantly decreased in STAP-2-knockdown DU145 cells. Mechanistically, we found that STAP-2 interacted with EGFR and enhanced its stability by inhibiting c-CBL-mediated EGFR ubiquitination. Our results indicate that STAP-2 promotes prostate cancer progression via facilitating EGFR activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Receptores ErbB/química , Fosfoproteínas/metabolismo , Neoplasias da Próstata/patologia , Animais , Receptores ErbB/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Fosforilação , Neoplasias da Próstata/metabolismo , Estabilidade Proteica , Transdução de Sinais , Células Tumorais Cultivadas , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biochem Biophys Res Commun ; 488(1): 81-87, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28478037

RESUMO

STAP-2 is an adaptor molecule regulating several signaling pathways, including TLRs and cytokine/chemokine receptors in immune cells. We previously reported that STAP-2 enhances SDF-1α-induced Vav1/Rac1-mediated T-cell chemotaxis. However, the detailed mechanisms of STAP-2 involvement in enhancing T-cell chemotaxis remain unknown. In the present study, we demonstrate that STAP-2 directly interacts with Pyk2, which is a key molecule in the regulation of SDF-1α/CXCR4-mediated T-cell chemotaxis, and increases phosphorylation of Pyk2. Pyk2 itself can induce STAP-2 Y250 phosphorylation, and this phosphorylation is critical for maximal interactions between STAP-2 and Pyk2. Finally, SDF-1α-induced T-cell chemotaxis is inhibited by treatment with Pyk2 siRNA or AG17, an inhibitor of Pyk2, in Jurkat cells overexpressing STAP-2. Taken together, the Pyk2/STAP-2 interaction is a novel mechanism to regulate SDF-1α-dependent T-cell chemotaxis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Fosfoproteínas/metabolismo , Linfócitos T/metabolismo , Humanos , Células Tumorais Cultivadas
11.
J Biol Chem ; 291(21): 11161-71, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27048653

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is involved in cell proliferation, differentiation, and cell survival during immune responses, hematopoiesis, neurogenesis, and other biological processes. STAT3 activity is regulated by a variety of mechanisms, including phosphorylation and nuclear translocation. To clarify the molecular mechanisms underlying the regulation of STAT3 activity, we performed yeast two-hybrid screening. We identified ARL3 (ADP-ribosylation factor-like 3) as a novel STAT3-binding partner. ARL3 recognizes the DNA-binding domain as well as the C-terminal region of STAT3 in vivo, and their binding was the strongest when both proteins were activated. Importantly, small interfering RNA-mediated reduction of endogenous ARL3 expression decreased IL-6-induced tyrosine phosphorylation, nuclear accumulation, and transcriptional activity of STAT3. These results indicate that ARL3 interacts with STAT3 and regulates the transcriptional activation of STAT3 by influencing its nuclear accumulation of STAT3.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Núcleo Celular/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Ribosilação do ADP/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Interleucina-6/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Fator de Transcrição STAT3/genética
12.
World J Biol Chem ; 6(4): 324-32, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26629315

RESUMO

Signal transducers and activators of transcription (STATs) mediate essential signals for various biological processes, including immune responses, hematopoiesis, and neurogenesis. STAT3, for example, is involved in the pathogenesis of various human diseases, including cancers, autoimmune and inflammatory disorders. STAT3 activation is therefore tightly regulated at multiple levels to prevent these pathological conditions. A number of proteins have been reported to associate with STAT3 and regulate its activity. These STAT3-interacting proteins function to modulate STAT3-mediated signaling at various steps and mediate the crosstalk of STAT3 with other cellular signaling pathways. This article reviews the roles of novel STAT3 binding partners such as DAXX, zipper-interacting protein kinase, Krüppel-associated box-associated protein 1, Y14, PDZ and LIM domain 2 and signal transducing adaptor protein-2, in the regulation of STAT3-mediated signaling.

13.
Biochem Biophys Res Commun ; 463(4): 825-31, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26102025

RESUMO

Chronic myeloid leukemia is a clonal disease characterized by the presence of the Philadelphia chromosome and its oncogenic product, BCR-ABL, which activates multiple pathways involved in cell survival, growth promotion, and disease progression. We previously reported that in murine hematopoietic Ba/F3 cells, signal transducing adaptor protein-2 (STAP-2) binds to BCR-ABL and up-regulates BCR-ABL phosphorylation, leading to enhanced activation of its downstream signaling molecules. The binding of STAP-2 to BCR-ABL also influenced the expression levels of chemokine receptors, such as CXCR4 and CCR7. For the induction of CCR7 expression, signals mediated by the MAPK/ERK pathway were critical in Ba/F3 cells expressing BCR-ABL and STAP-2. In addition, STAP-2 cooperated with BCR-ABL to induce the production of CCR7 ligands, CCL19 and CCL21. Our results demonstrate a contribution of CCR7 to STAP-2-dependent enhancement of BCR-ABL-mediated cell growth in Ba/F3 cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células da Medula Óssea/citologia , Divisão Celular/fisiologia , Proteínas de Fusão bcr-abl/fisiologia , Receptores CCR7/fisiologia , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
14.
J Biol Chem ; 290(28): 17462-73, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26023234

RESUMO

Melanoma is the most serious type of skin cancer, with a highly metastatic phenotype. In this report, we show that signal transducing adaptor protein 2 (STAP-2) is involved in cell migration, proliferation, and melanogenesis as well as chemokine receptor expression and tumorigenesis in B16F10 melanoma cells. This was evident in mice injected with STAP-2 shRNA (shSTAP-2)-expressing B16F10 cells, which infiltrated organs in a completely different pattern from the original cells, showing massive colonization in the liver, kidney, and neck but not in the lung. The most important finding was that STAP-2 expression determined tyrosinase protein content. STAP-2 colocalized with tyrosinase in lysosomes and protected tyrosinase from protein degradation. It is noteworthy that B16F10 cells with knocked down tyrosinase showed similar cell characteristics as shSTAP-2 cells. These results indicated that tyrosinase contributed to some cellular events beyond melanogenesis. Taken together, one possibility is that STAP-2 positively regulates the protein levels of tyrosinase, which determines tumor invasion via controlling chemokine receptor expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melanoma Experimental/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Neoplasias Cutâneas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Forma Celular , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Lisossomos/metabolismo , Melaninas/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/genética , Invasividade Neoplásica , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Receptores de Quimiocinas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Neoplasias Cutâneas/genética
15.
Eur J Immunol ; 44(6): 1791-801, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24733425

RESUMO

Signal-transducing adaptor protein-2 (STAP-2) was cloned as a c-fms/M-CSF receptor interacting protein. STAP-2 is an adaptor protein carrying pleckstrin homology and Src homology 2 like domains, as well as a YXXQ motif. STAP-2 has been indicated to have an ability to bind and modulate a variety of signaling and transcriptional molecules. Especially, our previous in vitro studies showed that STAP-2 is crucial for immune and/or inflammatory responses. Here, we have investigated the role of STAP-2 in intestinal inflammation in vivo. The disruption of STAP-2 attenuates dextran sodium sulfate induced colitis via inhibition of macrophage recruitment. To study whether hematopoietic or epithelial cell derived STAP-2 is required for this phenomenon, we generated BM chimeric mice. STAP-2-deficient macrophages impair the ability of CXCL12-induced migration. Intriguingly, STAP-2 also regulates production of proinflammatory chemokines and cytokines such as CXCL1 and TNF-α from intestinal epithelial cells. Therefore, STAP-2 has a potential to regulate plural molecular events during pathological inflammatory responses. Furthermore, our findings not only indicate that STAP-2 is important in regulating intestinal inflammation, but also provide new insights toward the development of novel therapeutic approaches.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Movimento Celular/efeitos dos fármacos , Colite/imunologia , Sulfato de Dextrana/toxicidade , Macrófagos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Aloenxertos , Animais , Transplante de Medula Óssea , Movimento Celular/genética , Movimento Celular/imunologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Quimeras de Transplante/genética , Quimeras de Transplante/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
16.
J Immunol ; 192(8): 3488-95, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24616480

RESUMO

Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that regulates immune and inflammatory responses through interactions with a variety of signaling and transcriptional molecules. In the current study, we clarified the physiological role of STAP-2 in mast cell function, a key mediator of IgE-associated allergic responses. STAP-2 is constitutively expressed in mast cells. STAP-2 deficiency in mast cells greatly enhances FcεRI-mediated signals, resulting in the increased tyrosine phosphorylation of the phospholipase C-γ isoform, calcium mobilization, and degranulation. Of importance, STAP-2-deficient mice challenged with DNP-BSA after passive sensitization with anti-DNP IgE show more severe rectal temperature decrease than do wild-type mice. STAP-2-deficient mice also show increased vascular permeability and more severe cutaneous anaphylaxis after DNP-BSA injection. These regulatory functions performed by STAP-2 indicate that there is an interaction between STAP-2 and FcεRI. In addition, our previous data indicate that STAP-2 binds to the phospholipase C-γ isoform and IκB kinase-ß. Therefore, our data described in this article strongly suggest that manipulation of STAP-2 expression in mast cells may control the pathogenesis of allergic diseases and have the potential for treating patients with allergy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Imunoglobulina E/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Anafilaxia/genética , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Proliferação de Células , Citocinas/biossíntese , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Ligação Proteica , Receptores de IgE/metabolismo , Transdução de Sinais
17.
Int Immunol ; 26(5): 257-67, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24345760

RESUMO

Tyrosine kinase 2 (Tyk2), a member of the Jak kinase family, mediates signals triggered by various cytokines, which are related to the pathogenesis of psoriasis. In this study, we investigated the role of Tyk2 in IL-23-induced psoriasis-like skin inflammation. Tyk2(-/-) mice when injected with IL-23 showed significantly reduced ear skin swelling with epidermal hyperplasia and inflammatory cell infiltration compared with wild-type mice. In addition, Tyk2 deficiency reduced production of pro-inflammatory cytokines and psoriasis-relevant anti-microbial peptides. More noteworthy is that Tyk2 directly regulated IL-22-dependent inflammation and epidermal hyperplasia. Taken together with the inhibition of IL-23-induced inflammation by treatment with neutralizing antibodies against IL-17 or IL-22, Tyk2 participates in both IL-23 and IL-22 signal transduction to mediate psoriasis-like skin inflammation. On the basis of these findings, we demonstrated for the first time that a small-molecule Tyk2 inhibitor significantly inhibited IL-23-induced inflammation and cytokine production in the skin. These observations demonstrate the important role of Tyk2 in experimental skin inflammation and indicate the therapeutic potential of Tyk2 inhibition in human psoriasis.


Assuntos
Inflamação/imunologia , Psoríase/imunologia , Pele/imunologia , TYK2 Quinase/imunologia , Animais , Western Blotting , Calgranulina A/genética , Calgranulina A/imunologia , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Defensinas/genética , Defensinas/imunologia , Inibidores Enzimáticos/farmacologia , Expressão Gênica/imunologia , Humanos , Hiperplasia/imunologia , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-23 , Interleucinas/imunologia , Interleucinas/metabolismo , Interleucinas/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Psoríase/induzido quimicamente , Psoríase/prevenção & controle , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Pele/metabolismo , Pele/patologia , TYK2 Quinase/antagonistas & inibidores , TYK2 Quinase/genética , Tirfostinas/farmacologia , Interleucina 22
18.
J Immunol ; 191(3): 1436-44, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23817415

RESUMO

Although Y14 is known to be a component of the exon junction complex, we previously reported that Y14 regulates IL-6-induced STAT3 activation. In this study, we showed that endogenous Y14 positively regulated TNF-α-induced IL-6 expression in HeLa cells. Small interfering RNA-mediated Y14-knockdown reduced TNF-α-induced and NF-κB-mediated transcriptional activity, phosphorylation/degradation of IκBα, and nuclear localization of NF-κB/p65. As in the case of IL-6 stimuli, Y14 enhanced TNF-α-induced STAT3 phosphorylation, which is important for its nuclear retention. However, our manipulation of Y14 expression indicated that it is involved in TNF-α-induced IL-6 expression via both STAT3-dependent and -independent mechanisms. We screened signaling molecules in the TNF-α-NF-κB pathway and found that Y14 endogenously associated with receptor-interacting protein 1 (RIP1) and TNFR-associated death domain (TRADD). Overexpression of RIP1, but not TRADD, restored TNF-α-induced NF-κB activation in Y14-knockdown cells, and Y14 overexpression restored TNF-α-induced NF-κB activation in TRADD-knockdown cells, but not in RIP1-knockdown cells, indicating that Y14 lies downstream of TRADD and upstream of RIP1. Of importance, Y14 significantly enhanced the binding between RIP1 and TRADD, and this is a possible new mechanism for Y14-mediated modification of TNF-α signals. Although Y14 associates with MAGOH in the exon junction complex, Y14's actions in the TNF-α-NF-κB pathway are unlikely to require MAGOH. Therefore, Y14 positively regulates signals for TNF-α-induced IL-6 production at multiple steps beyond an exon junction complex protein.


Assuntos
NF-kappa B/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-6/biossíntese , Interleucina-6/genética , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Fator de Transcrição STAT1 , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/genética , Fator de Transcrição RelA/metabolismo , Transcrição Gênica
19.
J Immunol ; 188(12): 6194-204, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22611243

RESUMO

We found that an adaptor protein, signal-transducing adaptor protein (STAP)-2, is a new member of the Fas-death-inducing signaling complex and participates in activation-induced cell death in T cells. STAP-2 enhanced Fas-mediated apoptosis and caspase-8 aggregation and activation in Jurkat T cells. Importantly, STAP-2 directly interacted with caspase-8 and Fas, resulting in enhanced interactions between caspase-8 and FADD in the Fas-death-inducing signaling complex. Moreover, STAP-2 protein has a consensus caspase-8 cleavage sequence, VEAD, in its C-terminal domain, and processing of STAP-2 by caspase-8 was crucial for Fas-induced apoptosis. Physiologic roles of STAP-2 were confirmed by observations that STAP-2-deficient mice displayed impaired activation-induced cell death and superantigen-induced T cell depletion. Therefore, STAP-2 is a novel participant in the regulation of T cell apoptosis after stimulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/imunologia , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Fosfoproteínas/metabolismo , Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Western Blotting , Caspase 8/imunologia , Proteína de Domínio de Morte Associada a Fas/imunologia , Citometria de Fluxo , Humanos , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Células Jurkat , Camundongos , Camundongos Knockout , Fosfoproteínas/imunologia , RNA Interferente Pequeno , Linfócitos T/imunologia , Transfecção , Receptor fas/imunologia , Receptor fas/metabolismo
20.
Sci Signal ; 4(202): ra85, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22155789

RESUMO

Granuloma formation is an important host defense mechanism against intracellular bacteria; however, uncontrolled granulomatous inflammation is pathologic. T helper 17 (TH17) cells are thought to have a pathogenic role in autoimmune and inflammatory diseases, including in granulomas. Here, we report that the PDZ-LIM domain protein PDLIM2 inhibited TH17 cell development and granulomatous responses by acting as a nuclear ubiquitin E3 ligase that targeted signal transducer and activator of transcription 3 (STAT3), a transcription factor critical for the commitment of naïve CD4+ T cells to the TH17 lineage. PDLIM2 promoted the polyubiquitination and proteasomal degradation of STAT3, thereby disrupting STAT3-mediated gene activation. Deficiency in PDLIM2 resulted in the accumulation of STAT3 in the nucleus, enhanced the extent of TH17 cell differentiation, and exacerbated granuloma formation. This study delineates an essential role for PDLIM2 in inhibiting TH17 cell-mediated inflammatory responses by suppressing STAT3 signaling and provides a potential therapeutic target for the treatment of autoimmune diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Granuloma/imunologia , Inflamação/imunologia , Proteínas com Domínio LIM/imunologia , Proteínas com Domínio LIM/fisiologia , Fator de Transcrição STAT3/metabolismo , Células Th17/imunologia , Células Th17/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Granuloma/etiologia , Granuloma/metabolismo , Células HEK293 , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Proteínas com Domínio LIM/antagonistas & inibidores , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Proteínas dos Microfilamentos/fisiologia , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Células Th17/citologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA