Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 886, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797255

RESUMO

We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.


Assuntos
Senilidade Prematura , Resistência à Insulina , Camundongos , Animais , Humanos , Idoso , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Metionina/metabolismo , Senilidade Prematura/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Racemetionina/metabolismo
2.
Front Immunol ; 13: 1002163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263047

RESUMO

Aging results in enhanced myelopoiesis, which is associated with an increased prevalence of myeloid leukemias and the production of myeloid-derived suppressor cells (MDSCs). Tristetraprolin (TTP) is an RNA binding protein that regulates immune-related cytokines and chemokines by destabilizing target mRNAs. As TTP expression is known to decrease with age in myeloid cells, we used TTP-deficient (TTPKO) mice to model aged mice to study TTP regulation in age-related myelopoiesis. Both TTPKO and myeloid-specific TTPKO (cTTPKO) mice had significant increases in both MDSC subpopulations M-MDSCs (CD11b+Ly6ChiLy6G-) and PMN-MDSCs (CD11b+Ly6CloLy6G+), as well as macrophages (CD11b+F4/80+) in the spleen and mesenteric lymph nodes; however, no quantitative changes in MDSCs were observed in the bone marrow. In contrast, gain-of-function TTP knock-in (TTPKI) mice had no change in MDSCs compared with control mice. Within the bone marrow, total granulocyte-monocyte progenitors (GMPs) and monocyte progenitors (MPs), direct antecedents of M-MDSCs, were significantly increased in both cTTPKO and TTPKO mice, but granulocyte progenitors (GPs) were significantly increased only in TTPKO mice. Transcriptomic analysis of the bone marrow myeloid cell populations revealed that the expression of CC chemokine receptor 2 (CCR2), which plays a key role in monocyte mobilization to inflammatory sites, was dramatically increased in both cTTPKO and TTPKO mice. Concurrently, the concentration of CC chemokine ligand 2 (CCL2), a major ligand of CCR2, was high in the serum of cTTPKO and TTPKO mice, suggesting that TTP impacts the mobilization of M-MDSCs from the bone marrow to inflammatory sites during aging via regulation of the CCR2-CCL2 axis. Collectively, these studies demonstrate a previously unrecognized role for TTP in regulating age-associated myelopoiesis through the expansion of specific myeloid progenitors and M-MDSCs and their recruitment to sites of injury, inflammation, or other pathologic perturbations.


Assuntos
Células Supressoras Mieloides , Camundongos , Animais , Células Supressoras Mieloides/metabolismo , Receptores CCR2/genética , Tristetraprolina/genética , Tristetraprolina/metabolismo , Ligantes , Quimiocinas/metabolismo , Citocinas/metabolismo , Quimiocinas CC/metabolismo
3.
FEBS J ; 280(15): 3669-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23718776

RESUMO

The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment.


Assuntos
DNA/química , Proteína 1 de Resposta de Crescimento Precoce/química , Sequência de Aminoácidos , Histidina/química , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Propriedades de Superfície , Termodinâmica
4.
Biophys Chem ; 179: 12-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23714425

RESUMO

The BclXL apoptotic repressor bears the propensity to associate into megadalton oligomers in solution, particularly under acidic pH. Herein, using various biophysical methods, we analyze the effect of temperature on the oligomerization of BclXL. Our data show that BclXL undergoes irreversible aggregation and assembles into highly-ordered rope-like homogeneous fibrils with length in the order of mm and a diameter in the µm-range under elevated temperatures. Remarkably, the formation of such fibrils correlates with the decay of a largely α-helical fold into a predominantly ß-sheet architecture of BclXL in a manner akin to the formation of amyloid fibrils. Further interrogation reveals that while BclXL fibrils formed under elevated temperatures show no observable affinity toward BH3 ligands, they appear to be optimally primed for insertion into cardiolipin bicelles. This salient observation strongly argues that BclXL fibrils likely represent an on-pathway intermediate for insertion into mitochondrial outer membrane during the onset of apoptosis. Collectively, our study sheds light on the propensity of BclXL to form amyloid-like fibrils with important consequences on its mechanism of action in gauging the apoptotic fate of cells in health and disease.


Assuntos
Temperatura Alta , Proteína bcl-X/química , Apoptose , Cardiolipinas/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Estrutura Secundária de Proteína
5.
Biophys Chem ; 175-176: 54-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23528987

RESUMO

Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function.


Assuntos
Prolina/química , Proteína SOS1/química , Sequência de Aminoácidos , Dicroísmo Circular , Guanidina/química , Humanos , Luz , Dados de Sequência Molecular , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteína SOS1/genética , Proteína SOS1/metabolismo , Espalhamento de Radiação , Ureia/química
6.
J Mol Biol ; 422(1): 58-74, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22634283

RESUMO

The WW-containing oxidoreductase (WWOX) tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WW-binding protein 1 (WBP1) and WW-binding protein 2 (WBP2) signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of a triple-stranded ß-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically distinct E66/Y85 duo at structurally equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, not only does the introduction of E66R/Y85W double substitution within the WW2 domain result in gain of function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild-type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Oxirredutases/química , Oxirredutases/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Biofísica , Humanos , Ligantes , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Transfecção , Oxidorredutase com Domínios WW
7.
J Mol Biol ; 416(1): 57-77, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22197371

RESUMO

B-cell lymphoma extra large (BclXL) apoptotic repressor plays a central role in determining the fate of cells to live or die during physiological processes such as embryonic development and tissue homeostasis. Herein, using a myriad of biophysical techniques, we provide evidence that ligand binding and membrane insertion compete with oligomerization of BclXL in solution. Of particular importance is the observation that such oligomerization is driven by the intermolecular binding of its C-terminal transmembrane (TM) domain to the canonical hydrophobic groove in a domain-swapped trans fashion, whereby the TM domain of one monomer occupies the canonical hydrophobic groove within the other monomer and vice versa. Binding of BH3 ligands to the canonical hydrophobic groove displaces the TM domain in a competitive manner, allowing BclXL to dissociate into monomers upon hetero-association. Remarkably, spontaneous insertion of BclXL into DMPC/DHPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dihexanoyl-sn-glycero-3-phosphocholine) bicelles results in a dramatic conformational change such that it can no longer recognize the BH3 ligands in what has come to be known as the "hit-and-run" mechanism. Collectively, our data suggest that oligomerization of a key apoptotic repressor serves as an allosteric switch that fine-tunes its ligand binding and membrane insertion pertinent to the regulation of apoptotic machinery.


Assuntos
Proteína bcl-X/química , Proteína bcl-X/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Membrana Celular/metabolismo , Humanos , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Termodinâmica
8.
J Mol Recognit ; 24(6): 1007-17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22038807

RESUMO

Estrogen receptor α (ERα) acts as a transcription factor by virtue of the ability of its DNA-binding (DB) domain, comprised of a tandem pair of zinc fingers, to recognize the estrogen response element within the promoters of target genes. Herein, using an array of biophysical methods, we probe the structural consequences of the replacement of zinc within the DB domain of ERα with various environmental metals and their effects on the thermodynamics of binding to DNA. Our data reveal that whereas the DB domain reconstituted with divalent ions of zinc, cadmium, mercury, and cobalt binds to DNA with affinities in the nanomolar range, divalent ions of barium, copper, iron, lead, manganese, nickel, and tin are unable to regenerate DB domain with DNA-binding potential, although they can compete with zinc for coordinating the cysteine ligands within the zinc fingers. We also show that the metal-free DB domain is a homodimer in solution and that the binding of various metals only results in subtle secondary and tertiary structural changes, implying that metal coordination may only be essential for binding to DNA. Collectively, our findings provide mechanistic insights into how environmental metals may modulate the physiological function of a key nuclear receptor involved in mediating a plethora of cellular functions central to human health and disease.


Assuntos
DNA/química , Poluentes Ambientais/química , Receptor alfa de Estrogênio/química , Metais/química , Zinco/química , Calorimetria , Dicroísmo Circular , Cisteína/química , DNA/metabolismo , Receptor alfa de Estrogênio/metabolismo , Humanos , Ligantes , Estrutura Terciária de Proteína , Termodinâmica , Zinco/metabolismo , Dedos de Zinco
9.
Biochemistry ; 50(44): 9616-27, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21981024

RESUMO

The YAP2 transcriptional regulator mediates a plethora of cellular functions, including the newly discovered Hippo tumor suppressor pathway, by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using isothermal titration calorimery and circular dichroism in combination with molecular modeling and molecular dynamics, we provide evidence that the WW1 and WW2 domains of YAP2 recognize various PPXY motifs within WBP1 and WBP2 in a highly promiscuous and subtle manner. Thus, although both WW domains strictly require the integrity of the consensus PPXY sequence, nonconsensus residues within and flanking this motif are not critical for high-affinity binding, implying that they most likely play a role in stabilizing the polyproline type II helical conformation of the PPXY ligands. Of particular interest is the observation that both WW domains bind to a PPXYXG motif with highest affinity, implicating a preference for a nonbulky and flexible glycine one residue to the C-terminal side of the consensus tyrosine. Importantly, a large set of residues within both WW domains and the PPXY motifs appear to undergo rapid fluctuations on a nanosecond time scale, suggesting that WW-ligand interactions are highly dynamic and that such conformational entropy may be an integral part of the reversible and temporal nature of cellular signaling cascades. Collectively, our study sheds light on the molecular determinants of a key WW-ligand interaction pertinent to cellular functions in health and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Fosfoproteínas/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Calorimetria , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Termodinâmica , Transativadores , Fatores de Transcrição , Proteínas de Sinalização YAP
10.
FEBS J ; 278(12): 2090-104, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21496208

RESUMO

Although allostery plays a central role in driving protein-DNA interactions, the physical basis of such cooperative behavior remains poorly understood. In the present study, using isothermal titration calorimetry in conjunction with site-directed mutagenesis, we provide evidence that an intricate network of energetically-coupled residues within the basic regions of the Jun-Fos heterodimeric transcription factor accounts for its allosteric binding to DNA. Remarkably, energetic coupling is prevalent in residues that are both close in space, as well as residues distant in space, implicating the role of both short- and long-range cooperative interactions in driving the assembly of this key protein-DNA interaction. Unexpectedly, many of the energetically-coupled residues involved in orchestrating such a cooperative network of interactions are poorly conserved across other members of the basic zipper family, emphasizing the importance of basic residues in dictating the specificity of basic zipper-DNA interactions. Collectively, our thermodynamic analysis maps an allosteric communication channel driving a key protein-DNA interaction central to cellular functions in health and disease.


Assuntos
DNA/metabolismo , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Humanos , Técnicas In Vitro , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Termodinâmica
11.
J Mol Recognit ; 24(4): 585-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21472810

RESUMO

A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Calorimetria , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/genética , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/genética , Proteoma , Termodinâmica
12.
Arch Biochem Biophys ; 507(2): 262-70, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21216218

RESUMO

Upon binding to estrogens, the ERα nuclear receptor acts as a transcription factor and mediates a multitude of cellular functions central to health and disease. Herein, using isothermal titration calorimetry (ITC) and circular dichroism (CD) in conjunction with molecular modeling (MM), we analyze the effect of symmetric introduction of single nucleotide variations within each half-site of the estrogen response element (ERE) on the binding of ERα nuclear receptor. Our data reveal that ERα exudes remarkable tolerance and binds to all genetic variants in the physiologically relevant nanomolar-micromolar range with the consensus ERE motif affording the highest affinity. We provide rationale for how genetic variations within the ERE motif may reduce its affinity for ERα by orders of magnitude at atomic level. Our data also suggest that the introduction of genetic variations within the ERE motif allows it to sample a much greater conformational space. Surprisingly, ERα displays no preference for binding to ERE variants with higher AT content, implying that any advantage due to DNA plasticity may be largely compensated by unfavorable entropic factors. Collectively, our study bears important consequences for how genetic variations within DNA promoter elements may fine-tune the physiological action of ERα and other nuclear receptors.


Assuntos
DNA/metabolismo , Entropia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/genética , Polimorfismo de Nucleotídeo Único , Sequências Repetitivas de Ácido Nucleico/genética , Elementos de Resposta/genética , Composição de Bases , Sequência de Bases , DNA/química , DNA/genética , Receptor alfa de Estrogênio/química , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína
13.
Biochemistry ; 49(29): 5978-88, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20593765

RESUMO

Nuclear receptors act as ligand-modulated transcription factors and orchestrate a plethora of cellular functions central to health and disease. Although studied for more than half a century, many mysteries surrounding the mechanism of action of nuclear receptors remain unresolved. Herein, using isothermal titration calorimetry (ITC) in conjunction with macromolecular modeling (MM), we provide evidence that the binding of the ERalpha nuclear receptor to its DNA response element is coupled to proton uptake by two ionizable residues, H196 and E203, located at the protein-DNA interface. Alanine substitution of these ionizable residues decouples protonation and hampers the binding of ERalpha to DNA by nearly 1 order of magnitude. Remarkably, H196 and E203 are predominantly conserved across approximately 50 members of the nuclear receptor family, implying that proton-coupled equilibrium may serve as a key regulatory switch for modulating protein-DNA interactions central to nuclear receptor function and regulation. Taken together, our findings unearth an unexpected but critical step in the molecular action of nuclear receptors and suggest that they may act as sensors of intracellular pH.


Assuntos
Núcleo Celular/metabolismo , DNA/metabolismo , Receptor alfa de Estrogênio/metabolismo , Elementos de Resposta , Sequência de Aminoácidos , Calorimetria/métodos , Sequência Conservada , DNA/química , Receptor alfa de Estrogênio/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Prótons , Eletricidade Estática , Termodinâmica
14.
Biochem Biophys Res Commun ; 394(4): 1030-5, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20331972

RESUMO

Leucine zippers, structural motifs typically comprised of five successive heptads of amino acids with a signature leucine at every seventh position, play a central role in the dimerization of bZIP family of transcription factors and their subsequent binding to the DNA promoter regions of target genes. Herein, using analytical laser scattering (ALS) in combination with isothermal titration calorimetry (ITC), we study the effect of successive C-terminal truncation of leucine zippers on the dimerization and energetics of binding of bZIP domains of Jun transcription factor to its DNA response element. Our data show that all five heptads are critical for the dimerization of bZIP domains and that the successive C-terminal truncation of residues leading up to each signature leucine significantly compromises the binding of bZIP domains to DNA. Taken together, our study provides novel insights into the energetic contributions of leucine zippers to the binding of bZIP domains of Jun transcription factor to DNA.


Assuntos
DNA/metabolismo , Zíper de Leucina , Proteínas Proto-Oncogênicas c-jun/metabolismo , Sequência de Aminoácidos , DNA/química , Entropia , Humanos , Lasers , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/genética , Espalhamento de Radiação
15.
Biochemistry ; 48(51): 12213-22, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19921846

RESUMO

The Jun-Fos heterodimeric transcription factor is a target of a diverse array of signaling cascades that initiate at the cell surface and converge in the nucleus and ultimately result in the expression of genes involved in a multitude of cellular processes central to health and disease. Here, using isothermal titration calorimetry in conjunction with circular dichroism, we report the effect of introducing single nucleotide variations within the TGACGTCA canonical motif on the binding of bZIP domains of Jun-Fos heterodimer to DNA. Our data reveal that the Jun-Fos heterodimer exhibits differential energetics in binding to such genetic variants in the physiologically relevant micromolar to submicromolar range with the TGACGTCA canonical motif affording the highest affinity. Although binding energetics are largely favored by enthalpic forces and accompanied by entropic penalty, neither the favorable enthalpy nor the unfavorable entropy correlates with the overall free energy of binding in agreement with the enthalpy-entropy compensation phenomenon widely observed in biological systems. However, a number of variants including the TGACGTCA canonical motif bind to the Jun-Fos heterodimer with high affinity through having overcome such enthalpy-entropy compensation barrier, arguing strongly that better understanding of the underlying invisible forces driving macromolecular interactions may be the key to future drug design. Our data also suggest that the Jun-Fos heterodimer has a preference for binding to TGACGTCA variants with higher AT content, implying that the DNA plasticity may be an important determinant of protein-DNA interactions. This notion is further corroborated by the observation that the introduction of genetic variations within the TGACGTCA motif allows it to sample a much greater conformational space. Taken together, these new findings further our understanding of the role of DNA sequence and conformation on protein-DNA interactions in thermodynamic terms.


Assuntos
DNA/química , DNA/genética , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-jun/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , DNA/metabolismo , Dimerização , Variação Genética , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
16.
Biochemistry ; 48(9): 1975-83, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19215067

RESUMO

The Jun-Fos heterodimeric transcription factor is the terminal link between the transfer of extracellular information in the form of growth factors and cytokines to the site of DNA transcription within the nucleus in a wide variety of cellular processes central to health and disease. Here, using isothermal titration calorimetry, we report detailed thermodynamics of the binding of bZIP domains of Jun-Fos heterodimer to synthetic dsDNA oligos containing the TGACTCA cis element and all possible single nucleotide variants thereof encountered widely within the promoters of a diverse array of genes. Our data show that Jun-Fos heterodimer tolerates single nucleotide substitutions and binds to TGACTCA variants with affinities in the physiologically relevant micromolar to submicromolar range. The energetics of binding are richly favored by enthalpic forces and opposed by entropic changes across the entire spectrum of TGACTCA variants in agreement with the notion that protein-DNA interactions are largely driven by electrostatic interactions and intermolecular hydrogen bonding. Of particular interest is the observation that the Jun-Fos heterodimer binds to specific TGACTCA variants in a preferred orientation. Our 3D atomic models reveal that such orientational preference results from asymmetric binding and may in part be attributable to chemically distinct but structurally equivalent residues R263 and K148 located within the basic regions of Jun and Fos, respectively. Taken together, our data suggest that the single nucleotide variants of the TGACTCA motif modulate energetics and orientation of binding of the Jun-Fos heterodimer and that such behavior may be a critical determinant of differential regulation of specific genes under the control of this transcription factor. Our study also bears important consequences for the occurrence of single nucleotide polymorphisms within the TGACTCA cis element at specific gene promoters between different individuals.


Assuntos
DNA/química , Mutação Puntual , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-jun/química , Sequência de Aminoácidos , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sítios de Ligação/genética , Ligação Competitiva , Calorimetria/métodos , DNA/genética , DNA/metabolismo , Entropia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Homologia de Sequência de Aminoácidos , Termodinâmica , Titulometria
17.
Arch Biochem Biophys ; 480(2): 75-84, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18940179

RESUMO

The Jun oncoprotein belongs to the AP1 family of transcription factors that is collectively engaged in diverse cellular processes by virtue of their ability to bind to the promoters of a wide spectrum of genes in a DNA sequence-dependent manner. Here, using isothermal titration calorimetry, we report detailed thermodynamics of the binding of bZIP domain of Jun to synthetic dsDNA oligos containing the TRE and CRE consensus promoter elements. Our data suggest that binding of Jun to both sites occurs with indistinguishable affinities but with distinct thermodynamic signatures comprised of favorable enthalpic contributions accompanied by entropic penalty at physiological temperatures. Furthermore, anomalously large negative heat capacity changes observed provoke a model in which Jun loads onto DNA as unfolded monomers coupled with subsequent folding and homodimerization upon association. Taken together, our data provide novel insights into the energetics of a key protein-DNA interaction pertinent to cellular signaling and cancer. Our study underscores the notion that the folding and dimerization of transcription factors upon association with DNA may be a more general mechanism employed in protein-DNA interactions and that the conventional school of thought may need to be re-evaluated.


Assuntos
DNA/química , Proteínas Proto-Oncogênicas c-jun/química , Sequência de Aminoácidos , Sequência de Bases , Dimerização , Humanos , Dados de Sequência Molecular , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Temperatura , Termodinâmica , Fatores de Transcrição/química
18.
Arch Biochem Biophys ; 479(1): 52-62, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18778683

RESUMO

Grb2-Sos1 interaction, mediated by the canonical binding of N-terminal SH3 (nSH3) and C-terminal SH3 (cSH3) domains of Grb2 to a proline-rich sequence in Sos1, provides a key regulatory switch that relays signaling from activated receptor tyrosine kinases to downstream effector molecules such as Ras. Here, using isothermal titration calorimetry in combination with site-directed mutagenesis, we show that the nSH3 domain binds to a Sos1-derived peptide containing the proline-rich consensus motif PPVPPR with an affinity that is nearly threefold greater than that observed for the binding of cSH3 domain. We further demonstrate that such differential binding of nSH3 domain relative to the cSH3 domain is largely due to the requirement of a specific acidic residue in the RT loop of the beta-barrel fold to engage in the formation of a salt bridge with the arginine residue in the consensus motif PPVPPR. While this role is fulfilled by an optimally positioned D15 in the nSH3 domain, the chemically distinct and structurally non-equivalent E171 substitutes in the case of the cSH3 domain. Additionally, our data suggest that salt tightly modulates the binding of both SH3 domains to Sos1 in a thermodynamically distinct manner. Our data further reveal that, while binding of both SH3 domains to Sos1 is under enthalpic control, the nSH3 binding suffers from entropic penalty in contrast to entropic gain accompanying the binding of cSH3, implying that the two domains employ differential thermodynamic mechanisms for Sos1 recognition. Our new findings are rationalized in the context of 3D structural models of SH3 domains in complex with the Sos1 peptide. Taken together, our study provides structural basis of the differential binding of SH3 domains of Grb2 to Sos1 and a detailed thermodynamic profile of this key protein-protein interaction pertinent to cellular signaling and cancer.


Assuntos
Proteína Adaptadora GRB2/metabolismo , Proteína SOS1/metabolismo , Domínios de Homologia de src/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Consenso , Proteína Adaptadora GRB2/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Prolina/química , Estrutura Secundária de Proteína , Proteína SOS1/química , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Termodinâmica , Domínios de Homologia de src/genética
19.
Biochem Biophys Res Commun ; 375(4): 634-8, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18725194

RESUMO

Jun and Fos are components of the AP1 family of transcription factors and bind to the promoters of a diverse multitude of genes involved in critical cellular responses such as cell growth and proliferation, cell cycle regulation, embryonic development and cancer. Here, using the powerful technique of isothermal titration calorimetry, we characterize the thermodynamics of heterodimerization of leucine zippers of Jun and Fos. Our data suggest that the heterodimerization of leucine zippers is driven by enthalpic forces with unfavorable entropy change at physiological temperatures. Furthermore, the basic regions appear to modulate the heterodimerization of leucine zippers and may undergo at least partial folding upon heterodimerization. Large negative heat capacity changes accompanying the heterodimerization of leucine zippers are consistent with the view that leucine zippers do not retain alpha-helical conformations in isolation and that the formation of the native coiled-coil alpha-helical dimer is attained through a coupled folding-dimerization mechanism.


Assuntos
Entropia , Zíper de Leucina , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Calorimetria , Dimerização , Humanos , Estrutura Terciária de Proteína , Temperatura
20.
Arch Biochem Biophys ; 473(1): 48-60, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18316037

RESUMO

In response to mitogenic stimuli, the heterodimeric transcription factor Jun-Fos binds to the promoters of a diverse array of genes involved in critical cellular responses such as cell growth and proliferation, cell cycle regulation, embryogenic development and cancer. In so doing, Jun-Fos heterodimer regulates gene expression central to physiology and pathology of the cell in a specific and timely manner. Here, using the technique of isothermal titration calorimetry (ITC), we report detailed thermodynamics of the bZIP domains of Jun-Fos heterodimer to synthetic dsDNA oligos containing the TRE and CRE consensus promoter elements. Our data suggest that binding of the bZIP domains to both TRE and CRE is under enthalpic control and accompanied by entropic penalty at physiological temperatures. Although the bZIP domains bind to both TRE and CRE with very similar affinities, the enthalpic contributions to the free energy of binding to CRE are more favorable than TRE, while the entropic penalty to the free energy of binding to TRE is smaller than CRE. Despite such differences in their thermodynamic signatures, enthalpy and entropy of binding of the bZIP domains to both TRE and CRE are highly temperature-dependent and largely compensate each other resulting in negligible effect of temperature on the free energy of binding. From the plot of enthalpy change versus temperature, the magnitude of heat capacity change determined is much larger than that expected from the direct association of bZIP domains with DNA. This observation is interpreted to suggest that the basic regions in the bZIP domains are largely unstructured in the absence of DNA and only become structured upon interaction with DNA in a coupled folding and binding manner. Our new findings are rationalized in the context of 3D structural models of bZIP domains of Jun-Fos heterodimer in complex with dsDNA oligos containing the TRE and CRE consensus sequences. Taken together, our study demonstrates that enthalpy is the major driving force for a key protein-DNA interaction pertinent to cellular signaling and that protein-DNA interactions with similar binding affinities may be accompanied by differential thermodynamic signatures. Our data corroborate the notion that the DNA-induced protein structural changes are a general feature of the bZIP family of transcription factors.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , DNA/química , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-jun/química , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sítios de Ligação/genética , Sequência Consenso/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , DNA/metabolismo , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Estrutura Terciária de Proteína/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Elementos de Resposta/genética , Acetato de Tetradecanoilforbol/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA