Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39071311

RESUMO

Cytoplasmic dynein is a dimeric motor that drives minus-end directed transport on microtubules (MTs). To couple ATP hydrolysis to a mechanical step, a dynein monomer must be released from the MT before undergoing a conformational change that generates a bias towards the minus end. However, the dynamics of dynein stepping have been poorly characterized by tracking flexible regions of the motor with limited resolution. Here, we developed a cysteine-light mutant of yeast dynein and site-specifically labeled its MT-binding domain in vitro. MINFLUX tracking at sub-millisecond resolution revealed that dynein hydrolyzes one ATP per step and takes multitudes of 8 nm steps at physiological ATP. Steps are preceded by the transient movement towards the plus end. We propose that these backward "dips" correspond to MT release and subsequent diffusion of the stepping monomer around its MT-bound partner before taking a minus-end-directed conformational change of its linker. Our results reveal the order of sub-millisecond events that result in a productive step of dynein.

2.
Small Methods ; 7(4): e2201181, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734194

RESUMO

Point accumulation for imaging in nanoscale topography (PAINT) is a single-molecule technique for super-resolution microscopy, which uses exchangeable single stranded DNA oligos or peptide-pairs to create blinking phenomenon and achieves ≈5-25 nanometer resolution. Here, it is shown that by transfecting the protein-of-interest with a docker-coil, rather than by adding the docker externally-as is the norm when using DNA tethers or antibodies as dockers-similar localization can be achieved, ≈10 nm. However, using a transfected docker has several experimental advances and simplifications. Most importantly, it allows Peptide-PAINT to be applied to transfected live cells for imaging surface proteins in mammalian cells and neurons under physiological conditions. The enhanced resolution of Peptide-PAINT is also shown for organelles in fixed cells to unravel structural details including ≈40-nm and ≈60-nm axial repeats in vimentin filaments in the cytoplasm, and fiber shapes of sub-100-nm histone-rich regions in the nucleus.


Assuntos
DNA , Microscopia , Animais , DNA/genética , DNA/química , Nanotecnologia/métodos , Núcleo Celular , Peptídeos , Mamíferos
3.
Biophys J ; 121(19): 3651-3662, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35778844

RESUMO

Mutations of the intracellular estrogen receptor alpha (ERα) is implicated in 70% of breast cancers. Therefore, it is of considerable interest to image various mutants (L536S, Y537S, D538G) in living cancer cell lines, particularly as a function of various anticancer drugs. We therefore developed a small (13 kDa) Affimer, which, after fluorescent labeling, is able to efficiently label ERα by traveling through temporary pores in the cell membrane, created by the toxin streptolysin O. The Affimer, selected by a phage display, predominantly labels the Y537S mutant and can tell the difference between L536S and D538G mutants. The vast majority of Affimer-ERαY537S is in the nucleus and is capable of an efficient, unrestricted navigation to its target DNA sequence, as visualized by single-molecule fluorescence. The Affimer can also differentiate the effect of selective estrogen receptor modulators. More generally, this is an example of a small binding reagent-an Affimer protein-that can be inserted into living cells with minimal perturbation and high efficiency, to image an endogenous protein.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Mutação , Receptores de Estrogênio/genética , Receptores de Estrogênio/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico
4.
ACS Nano ; 16(2): 1999-2012, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35107994

RESUMO

Macrophages are white blood cells with diverse functions contributing to a healthy immune response as well as the pathogenesis of cancer, osteoarthritis, atherosclerosis, and obesity. Due to their pleiotropic and dynamic nature, tools for imaging and tracking these cells at scales spanning the whole body down to microns could help to understand their role in disease states. Here we report fluorescent and radioisotopic quantum dots (QDs) for multimodal imaging of macrophage cells in vivo, ex vivo, and in situ. Macrophage specificity is imparted by click-conjugation to dextran, a biocompatible polysaccharide that natively targets these cell types. The emission spectral band of the crystalline semiconductor core was tuned to the near-infrared for optical imaging deep in tissue, and probes were covalently conjugated to radioactive iodine for nuclear imaging. The performance of these probes was compared with all-organic dextran probe analogues in terms of their capacity to target macrophages in visceral adipose tissue using in vivo positron emission tomography/computed tomography (PET/CT) imaging, in vivo fluorescence imaging, ex vivo fluorescence, post-mortem isotopic analyses, and optical microscopy. All probe classes exhibited equivalent physicochemical characteristics in aqueous solution and similar in vivo targeting specificity. However, dextran-mimetic QDs provided enhanced signal-to-noise ratio for improved optical quantification, long-term photostability, and resistance to chemical fixation. In addition, the vascular circulation time for the QD-based probes was extended 9-fold compared with dextran, likely due to differences in conformational flexibility. The enhanced photophysical and photochemical properties of dextran-mimetic QDs may accelerate applications in macrophage targeting, tracking, and imaging across broad resolution scales, particularly advancing capabilities in single-cell and single-molecule imaging and quantification.


Assuntos
Pontos Quânticos , Neoplasias da Glândula Tireoide , Dextranos , Humanos , Radioisótopos do Iodo , Macrófagos , Imagem Óptica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Pontos Quânticos/química
5.
Neuro Oncol ; 23(4): 638-649, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130899

RESUMO

BACKGROUND: Large-scale genome-wide association studies (GWAS) have implicated thousands of germline genetic variants in modulating individuals' risk to various diseases, including cancer. At least 25 risk loci have been identified for low-grade gliomas (LGGs), but their molecular functions remain largely unknown. METHODS: We hypothesized that GWAS loci contain causal single nucleotide polymorphisms (SNPs) that reside in accessible open chromatin regions and modulate the expression of target genes by perturbing the binding affinity of transcription factors (TFs). We performed an integrative analysis of genomic and epigenomic data from The Cancer Genome Atlas and other public repositories to identify candidate causal SNPs within linkage disequilibrium blocks of LGG GWAS loci. We assessed their potential regulatory role via in silico TF binding sequence perturbations, convolutional neural network trained on TF binding data, and simulated annealing-based interpretation methods. RESULTS: We built an interactive website (http://education.knoweng.org/alg3/) summarizing the functional footprinting of 280 variants in 25 LGG GWAS regions, providing rich information for further computational and experimental scrutiny. We identified as case studies PHLDB1 and SLC25A26 as candidate target genes of rs12803321 and rs11706832, respectively, and predicted the GWAS variant rs648044 to be the causal SNP modulating ZBTB16, a known tumor suppressor in multiple cancers. We showed that rs648044 likely perturbed the binding affinity of the TF MAFF, as supported by RNA interference and in vitro MAFF binding experiments. CONCLUSIONS: The identified candidate (causal SNP, target gene, TF) triplets and the accompanying resource will help accelerate our understanding of the molecular mechanisms underlying genetic risk factors for gliomas.


Assuntos
Estudo de Associação Genômica Ampla , Glioma , Sistemas de Transporte de Aminoácidos , Proteínas de Ligação ao Cálcio , Predisposição Genética para Doença , Glioma/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Front Mol Neurosci ; 13: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231520

RESUMO

The post-synaptic density protein 95 (PSD-95) plays a central role in excitatory synapse development and synaptic plasticity. Phosphorylation of the N-terminus of PSD-95 at threonine 19 (T19) and serine 25 (S25) decreases PSD-95 stability at synapses; however, a molecular mechanism linking PSD-95 phosphorylation to altered synaptic stability is lacking. Here, we show that phosphorylation of T19/S25 recruits the phosphorylation-dependent peptidyl-prolyl cis-trans isomerase (Pin1) and reduces the palmitoylation of Cysteine 3 and Cysteine 5 in PSD-95. This reduction in PSD-95 palmitoylation accounts for the observed loss in the number of dendritic PSD-95 clusters, the increased AMPAR mobility, and the decreased number of functional excitatory synapses. We find the effects of Pin1 overexpression were all rescued by manipulations aimed at increasing the levels of PSD-95 palmitoylation. Therefore, Pin1 is a key signaling molecule that regulates the stability of excitatory synapses and may participate in the destabilization of PSD-95 following the induction of synaptic plasticity.

7.
J Am Chem Soc ; 142(7): 3449-3462, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31964143

RESUMO

Materials with short-wave infrared (SWIR) emission are promising contrast agents for in vivo animal imaging, providing high-contrast and high-resolution images of blood vessels in deep tissues. However, SWIR emitters have not been developed as molecular labels for microscopy applications in the life sciences, which require optimized probes that are bright, stable, and small. Here, we design and synthesize semiconductor quantum dots (QDs) with SWIR emission based on HgxCd1-xSe alloy cores red shifted to the SWIR by epitaxial deposition of thin HgxCd1-xS shells with a small band gap. By tuning alloy composition alone, the emission can be shifted across the visible-to-SWIR (VIR) spectra while maintaining a small and equal size, allowing direct comparisons of molecular labeling performance across a broad range of wavelength. After coating with click-functional multidentate polymers, the VIR-QD spectral series has high quantum yield in the SWIR (14-33%), compact size (13 nm hydrodynamic diameter), and long-term stability in aqueous media during continuous excitation. We show that these properties enable diverse applications of SWIR molecular probes for fluorescence microscopy using conjugates of antibodies, growth factors, and nucleic acids. A broadly useful outcome is a 10-55-fold enhancement of the signal-to-background ratio at both the single-molecule level and the ensemble level in the SWIR relative to visible wavelengths, primarily due to drastically reduced autofluorescence. We anticipate that VIR-QDs with SWIR emission will enable ultrasensitive molecular imaging of low-copy number analytes in biospecimens with high autofluorescence.


Assuntos
Microscopia de Fluorescência/métodos , Sondas Moleculares/química , Pontos Quânticos/química , Tecido Adiposo/química , Ligas/química , Animais , Compostos de Cádmio/química , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/análise , Receptores ErbB/metabolismo , Humanos , Camundongos , Tamanho da Partícula , Compostos de Selênio/química , Neoplasias de Mama Triplo Negativas/química , Neoplasias de Mama Triplo Negativas/metabolismo
8.
Bioconjug Chem ; 29(7): 2278-2286, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29932650

RESUMO

We develop magnetic cytoskeleton affinity (MiCA) purification, which allows for rapid isolation of molecular motors conjugated to large multivalent quantum dots, in miniscule quantities, which is especially useful for single-molecule applications. When purifying labeled molecular motors, an excess of fluorophores or labels is usually used. However, large labels tend to sediment during the centrifugation step of microtubule affinity purification, a traditionally powerful technique for motor purification. This is solved with MiCA, and purification time is cut from 2 h to 20 min, a significant time-savings when it needs to be done daily. For kinesin, MiCA works with as little as 0.6 µg protein, with yield of ∼27%, compared to 41% with traditional purification. We show the utility of MiCA purification in a force-gliding assay with kinesin, allowing, for the first time, simultaneous determination of whether the force from each motor in a multiple-motor system drives or hinders microtubule movement. Furthermore, we demonstrate rapid purification of just 30 ng dynein-dynactin-BICD2N-QD (DDB-QD), ordinarily a difficult protein-complex to purify.


Assuntos
Citoesqueleto/química , Microtúbulos/química , Proteínas Motores Moleculares/química , Pontos Quânticos/química , Animais , Cromatografia de Afinidade , Complexo Dinactina/isolamento & purificação , Dineínas/isolamento & purificação , Humanos , Proteínas Motores Moleculares/isolamento & purificação , Coloração e Rotulagem , Fatores de Tempo
9.
ACS Nano ; 11(1): 249-257, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27768850

RESUMO

Heterogeneity of mitogen-activated protein kinase (MAPK) activation in genetically identical cells, which occurs in response to epidermal growth factor receptor (EGFR) signaling, remains poorly understood. MAPK cascades integrate signals emanating from different EGFR spatial locations, including the plasma membrane and endocytic compartment. We previously hypothesized that in EGF-stimulated cells the MAPK phosphorylation (pMAPK) level and activity are largely determined by the spatial organization of the EGFR clusters within the cell. For experimental testing of this hypothesis, we used super-resolution microscopy to define EGFR clusters by receptor numbers (N) and average intracluster distances (d). From these data, we predicted the extent of pMAPK with 85% accuracy on a cell-to-cell basis with control data returning 54% accuracy (P < 0.001). For comparison, the prediction accuracy was only 61% (P = 0.382) when the diffraction-limited averaged fluorescence intensity/cluster was used. Large clusters (N ≥ 3) with d > 50 nm were most predictive for pMAPK level in cells. Electron microscopy revealed that these large clusters were primarily localized to the limiting membrane of multivesicular bodies (MVB). Many tighter packed dimers/multimers (d < 50 nm) were found on intraluminal vesicles within MVBs, where they were unlikely to activate MAPK because of the physical separation. Our results suggest that cell-to-cell differences in N and d contain crucial information to predict EGFR-activated cellular pMAPK levels and explain pMAPK heterogeneity in isogenic cells.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Modelos Lineares , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/química , Sondas Moleculares , Pontos Quânticos/química
10.
Elife ; 52016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27935478

RESUMO

Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial enzyme which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG's to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20-30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes.


Assuntos
Técnicas Citológicas/métodos , Corantes Fluorescentes/metabolismo , Microscopia Intravital/métodos , Microscopia de Fluorescência/métodos , Proteínas/análise , Coloração e Rotulagem/métodos , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Sobrevivência Celular , Cricetinae , Glutationa/metabolismo , Humanos , Oxigenases/metabolismo , Estreptolisinas/metabolismo
11.
J Am Chem Soc ; 138(10): 3382-94, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26863113

RESUMO

Quantum dots are fluorescent nanoparticles used to detect and image proteins and nucleic acids. Compared with organic dyes and fluorescent proteins, these nanocrystals have enhanced brightness, photostability, and wavelength tunability, but their larger size limits their use. Recently, multidentate polymer coatings have yielded stable quantum dots with small hydrodynamic dimensions (≤10 nm) due to high-affinity, compact wrapping around the nanocrystal. However, this coating technology has not been widely adopted because the resulting particles are frequently heterogeneous and clustered, and conjugation to biological molecules is difficult to control. In this article we develop new polymeric ligands and optimize coating and bioconjugation methodologies for core/shell CdSe/Cd(x)Zn(1-x)S quantum dots to generate homogeneous and compact products. We demonstrate that "ligand stripping" to rapidly displace nonpolar ligands with hydroxide ions allows homogeneous assembly with multidentate polymers at high temperature. The resulting aqueous nanocrystals are 7-12 nm in hydrodynamic diameter, have quantum yields similar to those in organic solvents, and strongly resist nonspecific interactions due to short oligoethylene glycol surfaces. Compared with a host of other methods, this technique is superior for eliminating small aggregates identified through chromatographic and single-molecule analysis. We also demonstrate high-efficiency bioconjugation through azide-alkyne click chemistry and self-assembly with hexa-histidine-tagged proteins that eliminate the need for product purification. The conjugates retain specificity of the attached biomolecules and are exceptional probes for immunofluorescence and single-molecule dynamic imaging. These results are expected to enable broad utilization of compact, biofunctional quantum dots for studying crowded macromolecular environments such as the neuronal synapse and cellular cytoplasm.


Assuntos
Acrilatos/química , Resinas Acrílicas/química , Técnicas Biossensoriais/métodos , Pontos Quânticos/química , Succinimidas/química , Compostos de Cádmio/química , DNA/química , Receptores ErbB/química , Humanos , Imunoconjugados/química , Ligantes , Compostos de Selênio/química
13.
Nano Lett ; 13(11): 5233-41, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24093439

RESUMO

Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (fwhm) of 8-17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3-7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells.


Assuntos
Pontos Quânticos , Neoplasias da Mama/metabolismo , Calibragem , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Feminino , Humanos
14.
J Biol Chem ; 288(45): 32612-32621, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24072715

RESUMO

Disruptions in microtubule motor transport are associated with a variety of neurodegenerative diseases. Post-translational modification of the cargo-binding domain of the light and heavy chains of kinesin has been shown to regulate transport, but less is known about how modifications of the motor domain affect transport. Here we report on the effects of phosphorylation of a mammalian kinesin motor domain by the kinase JNK3 at a conserved serine residue (Ser-175 in the B isoform and Ser-176 in the A and C isoforms). Phosphorylation of this residue has been implicated in Huntington disease, but the mechanism by which Ser-175 phosphorylation affects transport is unclear. The ATPase, microtubule-binding affinity, and processivity are unchanged between a phosphomimetic S175D and a nonphosphorylatable S175A construct. However, we find that application of force differentiates between the two. Placement of negative charge at Ser-175, through phosphorylation or mutation, leads to a lower stall force and decreased velocity under a load of 1 piconewton or greater. Sedimentation velocity experiments also show that addition of a negative charge at Ser-175 favors the autoinhibited conformation of kinesin. These observations imply that when cargo is transported by both dynein and phosphorylated kinesin, a common occurrence in the cell, there may be a bias that favors motion toward the minus-end of microtubules. Such bias could be used to tune transport in healthy cells when properly regulated but contribute to a disease state when misregulated.


Assuntos
Cinesinas/química , Substituição de Aminoácidos , Animais , Bovinos , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/química , Proteína Quinase 10 Ativada por Mitógeno/genética , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Mutação de Sentido Incorreto , Fosforilação/genética , Estrutura Terciária de Proteína , Transporte Proteico/genética , Células Sf9 , Spodoptera
15.
Proc Natl Acad Sci U S A ; 110(9): 3381-6, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23404705

RESUMO

Kinesin and dynein are fundamental components of intracellular transport, but their interactions when simultaneously present on cargos are unknown. We built an optical trap that can be calibrated in vivo during data acquisition for each individual cargo to measure forces in living cells. Comparing directional stall forces in vivo and in vitro, we found evidence that cytoplasmic dynein is active during minus- and plus-end directed motion, whereas kinesin is only active in the plus direction. In vivo, we found outward (∼plus-end) stall forces range from 2 to 7 pN, which is significantly less than the 5- to 7-pN stall force measured in vitro for single kinesin molecules. In vitro measurements on beads with kinesin-1 and dynein bound revealed a similar distribution, implying that an interaction between opposite polarity motors causes this difference. Finally, inward (∼minus-end) stalls in vivo were 2-3 pN, which is higher than the 1.1-pN stall force of a single dynein, implying multiple active dynein.


Assuntos
Dictyostelium/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Pinças Ópticas , Animais , Transporte Biológico , Fenômenos Biomecânicos/fisiologia , Dictyostelium/citologia , Humanos , Espaço Intracelular/metabolismo , Modelos Biológicos , Ligação Proteica
16.
Anal Chem ; 84(18): 7852-6, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22894546

RESUMO

Aptamers, single-stranded nucleic acids that can selectively bind to various target molecules, have been widely used for constructing biosensors. A major challenge in this field, however, is direct sensing of analytes in complex biological media such as undiluted serum. While progress has been made in developing an inhomogeneous assay by using a preseparation step to wash away the interferences within serum, a facile strategy for direct detection of targets in homogeneous unprocessed serum is highly desired. We herein report a turn-on luminescent aptamer biosensor for the direct detection of adenosine in undiluted and unprocessed serum, by taking advantage of a terbium chelate complex with long luminescence lifetime to achieve time-resolved detection. The sensor exhibits a detection limit of 60 µM adenosine while marinating excellent selectivity that is comparable to those in buffer. The approach demonstrated here can be applied for direct detection and quantification of a broad range of analytes in biological media by using other aptamers.


Assuntos
Adenosina/sangue , Aptâmeros de Nucleotídeos/metabolismo , Complexos de Coordenação/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Térbio/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Quelantes/química
17.
Nano Lett ; 12(7): 3861-6, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22698062

RESUMO

Many types of cancer and neurodegenerative diseases are caused by abnormalities and variations in the genome. We have designed a high-resolution imaging technique with high throughput and low cost for determining structural variations of genes related to genetic diseases. We initially mapped all seven nicking sites of Nb.BbvCI endonuclease enzyme on lambda DNA. Then we resolved densely labeled patterns of 107 nicking sites on human BAC DNA that is digested by Nb.BsmI and Nb.BbvCI endonuclease enzymes. This high density resulted in several dyes being closer together than the diffraction limit. Overall, detailed DNA nicking sites mapping with 100 bp resolution was achieved, which has the potential to reveal information about genetic variance and to facilitate medical diagnosis of several genetic diseases.


Assuntos
Bacteriófago lambda/genética , Mapeamento Cromossômico , DNA/genética , Bacteriófago lambda/metabolismo , DNA/metabolismo , Endonucleases/metabolismo , Variação Genética/genética , Humanos
18.
Nano Lett ; 11(10): 4074-8, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21882883

RESUMO

We report the first two-photon (2P) microscopy of individual quantum dots (QDs) in an aqueous environment with both widefield and point-scan excitations at nanometer accuracy. Thiol-containing reductants suppress QD blinking and enable measurement of the 36 nm step size of individual Myosin V motors in vitro. We localize QDs with an accuracy of 2-3 nm in all three dimensions by using a 9 × 9 matrix excitation hologram and an array detector, which also increases the 3D scan imaging rate by 80-fold. With this 3D microscopy we validate the LamB receptor distribution on E. coli and the endocytosis of EGF-receptors in breast cancer cells.


Assuntos
Pontos Quânticos , Água , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Endocitose , Receptores ErbB/metabolismo , Feminino , Humanos , Fótons
19.
Proc Natl Acad Sci U S A ; 106(31): 12717-22, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19617538

RESUMO

Kinesin I can walk on a microtubule for distances as long as several micrometers. However, it is still unclear how this molecular motor can remain attached to the microtubule through the hundreds of mechanochemical cycles necessary to achieve this remarkable degree of processivity. We have addressed this issue by applying ensemble and single-molecule fluorescence methods to study the process of kinesin stepping, and our results lead to 4 conclusions. First, under physiologic conditions, approximately 75% of processively moving kinesin molecules are attached to the microtubule via both heads, and in this conformation, they are resistant to dissociation. Second, the remaining 25% of kinesin molecules, which are in an "ATP waiting state" and are strongly attached to the microtubule via only one head, are intermittently in a conformation that cannot bind ATP and therefore are resistant to nucleotide-induced dissociation. Third, the forward step in the kinesin ATPase cycle is very fast, accounting for <5% of the total cycle time, which ensures that the lifetime of this ATP waiting state is relatively short. Finally, by combining nanometer-level single-molecule fluorescence localization with higher ATP concentrations than used previously, we have determined that in this ATP waiting state, the ADP-containing head of kinesin is located 8 nm behind the attached head, in a location where it can interact with the microtubule lattice. These 4 features reduce the likelihood that a kinesin I motor will dissociate and contribute to making this motor so highly processive.


Assuntos
Cinesinas/fisiologia , Trifosfato de Adenosina/metabolismo , Cinesinas/química , Microscopia de Fluorescência , Microtúbulos/fisiologia , Conformação Proteica , Rodaminas/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(16): 6016-21, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18427114

RESUMO

In vivo studies suggest that centromeric protein E (CENP-E), a kinesin-7 family member, plays a key role in the movement of chromosomes toward the metaphase plate during mitosis. How CENP-E accomplishes this crucial task, however, is not clear. Here we present single-molecule measurements of CENP-E that demonstrate that this motor moves processively toward the plus end of microtubules, with an average run length of 2.6 +/- 0.2 mum, in a hand-over-hand fashion, taking 8-nm steps with a stall force of 6 +/- 0.1 pN. The ATP dependence of motor velocity obeys Michaelis-Menten kinetics with K(M,ATP) = 35 +/- 5 muM. All of these features are remarkably similar to those for kinesin-1-a highly processive transport motor. We, therefore, propose that CENP-E transports chromosomes in a manner analogous to how kinesin-1 transports cytoplasmic vesicles.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitose , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Cromossômicas não Histona/química , Cinesinas/química , Cinética , Microtúbulos/química , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA