Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611285

RESUMO

Polyphenols are ubiquitous by-products in many plant foods. Their intake has been linked to health benefits like the reduced incidence of cardiovascular disease, diabetes, and cancer. These bioactive compounds can be successfully extracted from Boletus edulis mushrooms with acidic water. However, such extract could influence the sensory or textural properties of the product to be enriched; this inconvenience can be avoided by microencapsulating it using spray drying. In this study, the Vienna sausages were reformulated by replacing 2% of the cured meat with microcapsules containing an acidic aqueous extract of Boletus edulis mushrooms and by replacing ice flakes, an ingredient that represents 22.9% of the manufacturing recipe, with ice cubes from the same extract aiming to obtain a polyphenol enriched product. The results showed a higher content of polyphenols in sausages with extract (VSe; 568.92 µg/g) and microcapsules (VSm; 523.03 µg/g) than in the control ones (455.41 µg/g), with significant differences for 2,4-dihydroxybenzoic acid, protocatechuic acid, and 1-O-galloyl-ß-D-glucose. However, because of the oxidative stress caused to the microcapsules by the extract's spray drying, VSm had the highest oxidation state. PV and TBARS levels varied with storage time in all formulations, but given the short period tested, they were well below the allowed/recommended limit. The extract, as such, negatively affected the appearance, odor, and taste of Vienna sausages. The microcapsules, instead, determined an increase in their acceptance rate among consumers; they also prevented moisture loss and color changes during storage. In conclusion, microcapsules are more suitable for use as a polyphenol enrichment ingredient in Vienna sausages than the extract.

2.
J Sci Food Agric ; 103(2): 680-691, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36053837

RESUMO

BACKGROUND: Pumpkin seed and sunflower oil are rich in bioactive compounds, but are prone to oxidation during storage. Their fatty acids, carotenoid and volatile compounds and their Fourier-transform infrared (FTIR) profiles were studied during 8 months storage in order to assess the overall quality, but also to assess the impact of the oleogelation as conditioning process. RESULTS: The fatty acids methyl esters were analyzed by gas chromatography-mass spectrometry (GC-MS). The linoleic acid was the most abundant in the oils (604.6 g kg-1 in pumpkin and 690 g kg-1 in sunflower), but also in oleogels. Through high-performance liquid chromatography (HPLC), lutein and ß-carotene were determined as specific carotenoid compounds of the pumpkin seed oil and oleogel, in a total amount of 0.0072 g kg-1 . The volatile compounds profile revealed the presence of alpha-pinene for the pumpkin seed oil and oleogels and a tentative identification of limonene for the sunflower oil. Hexanal was also detected in the oleogels, indicating a thermal oxidation, which was further analyzed through infrared spectroscopy. CONCLUSIONS: During 8 months storage, the decrease of polyunsaturated fatty acid total amount was 5.72% for the pumpkin seed oil and 3.55% for the oleogel, while in the sunflower oil samples of 2.93% and 3.28% for the oleogel. It was concluded that oleogelation might protect specific carotenoid compounds, since the oleogels displayed higher content of ß-carotene at each storage time. Hexanal and heptanal were detected during storage, regardless of the oil or oleogel type. FTIR analysis depicts the differences in the constituent fatty acids resulting due to thermal oxidation or due to storage. © 2022 Society of Chemical Industry.


Assuntos
Cucurbita , Cucurbita/química , Ácidos Graxos/química , Carotenoides/análise , Óleo de Girassol/análise , beta Caroteno/análise , Sementes/química , Óleos de Plantas/química , Aldeídos/análise
3.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209133

RESUMO

Over the past decade, there has been growing interest in polyphenols' research since these compounds, as antioxidants, have several health benefits, such as preventing neurodegenerative diseases, inflammation, cancer, cardiovascular diseases, and type 2 diabetes. This study implements an analytical method to assess the total phenolic content (TPC) in essential oils using Folin-Ciocalteu's phenol reagent and quantifies the individual phenolic compounds by liquid chromatography. Thus, the research design and methodology included: (1) extraction of essential oil from dried thyme leaves by hydrodistillation; (2) spectrophotometric measurement of TPC by Folin-Ciocalteu method; and (3) identification and quantification of individual phenolic compounds by high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS). Results revealed a TPC of 22.62 ± 0.482 mg GAE/100 µL and a polyphenolic profile characterized by phenolic acids (52.1%), flavonoids (16.1%), and other polyphenols (31.8%). Thymol, salvianolic acid A, and rosmarinic acid were the major compounds of thyme essential oil. The proposed analytical procedure has an acceptable level of repeatability, reproducibility, linearity, LOD (limit of detection), and LOQ (limit of quantification).


Assuntos
Óleos Voláteis/análise , Óleos Voláteis/química , Fenóis/análise , Espectrofotometria , Cromatografia Líquida de Alta Pressão , Metanol , Extratos Vegetais/química , Polifenóis/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria/métodos
4.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946590

RESUMO

Edible mushrooms are well-known for their nutritional benefits and low energy density. In addition, mushroom extracts contain various bioactive compounds that account for their antioxidant activity; the applied extraction conditions influence the extraction efficiency of such compounds. Therefore, this study investigates the effects of four extractants on the content of polyphenols and antioxidant properties of Boletus edulis and Cantharellus cibarius mushrooms, aiming to optimize the extraction process. Powders of B. edulis and C. cibarius mushrooms were subjected to extraction with acidic water (10% CH3COOH), ethanol/water/acetic acid (15:76.5:8.5, v/v/v), hexane, and diethyl ether to measure their total phenolic content (TPC), total flavonoid content (TFC), and Trolox equivalent antioxidant capacity (TEAC). Furthermore, the level of individual polyphenolic compounds in these extracts was quantified using an HPLC-DAD-ESI-MS method. Results showed that the type of solvent significantly influenced the TPC and TEAC of mushroom powder but insignificantly influenced the TFC. A very strong positive correlation was found between TPC and TEAC, but no correlation was found between TFC and TEAC or TPC and TFC. Acidic water extracted the highest amount of polyphenolic compounds from these mushroom powders. Therefore, the aqueous extract showed the highest TPC and strongest antioxidant activity. Thus, acidic water is recommended for polyphenol analysis in B. edulis and C. cibarius mushrooms.


Assuntos
Antioxidantes/farmacologia , Basidiomycota/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Ácido Acético/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Etanol/química , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação , Análise de Componente Principal , Romênia , Solventes/química , Água/química
5.
Foods ; 10(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670385

RESUMO

The efficiency of some films prepared from heat-denatured whey protein isolate solutions on the quality and shelf-life of brook trout samples during storage at 4 °C was studied in this research (WPIf-a film based on whey protein isolate and WPIf+2.5%TEO-a film based on whey protein isolate incorporated with 2.5% tarragon essential oil). The control and covered fish samples were periodically assessed (at 3 days) over 15 days of storage for the physicochemical (pH; EC, electrical conductivity; TVB-N, total volatile basic nitrogen; TBARS, thiobarbituric acid reactive substances; color), microbiological (TVC, total viable count; PTC, psychrotrophic count; LAB, lactic acid bacteria; H2S-producing bacteria), and sensory properties (color discoloration; odor; overall acceptability). The WPIf+2.5%TEO has proven enhanced quality preservation effects compared to WPIf by showing lower values for physicochemical parameters, lower microbial loads, and higher sensory scores in the fish sample. All these effects have led to an extension of the sample's shelf-life. In conclusion, the tarragon essential oil has conferred antioxidant and antimicrobial properties to the film. Thus, the WPIf+2.5%TEO could be a promising material for the packaging of fresh brook trout during refrigerated storage.

6.
Polymers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764387

RESUMO

The effects of heat treatment and the addition of tarragon essential oil on physical and mechanical properties of films prepared with 5% whey protein isolate (WPI) and 5% glycerol were investigated in this study. Heat treatment of the film-forming solution caused increases in thickness, moisture content, swelling degree, water vapor permeability (WVP), b*-value, ΔE*-value, transmittance values in the 200-300-nm region, transparency, and puncture resistance of the film, but decreases in water solubility, L*-value, a*-value, transmittance values in the 350-800-nm region, and puncture deformation. When incorporated with tarragon essential oil, heat-treated films have the potential to be used as antimicrobial food packaging. The addition of tarragon essential oil in film-forming solution caused increases in moisture content, solubility in water, WVP, a*-value, b*-value, ΔE*-value, and transparency of the film; decreases in transmittance values in the range of 600-800 nm; and variations in swelling degree, L*-value, transmittance values in the range of 300-550 nm, puncture resistance, and puncture deformation. Nevertheless, different tendencies were noticed in UNT (untreated) and HT (heat-treated) films with regards to transparency, light transmittance, puncture resistance, and puncture deformation. Based on these findings, HT films show improved physical and mechanical properties and, therefore, are more suitable for food-packaging applications.

7.
J Food Drug Anal ; 25(2): 403-408, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28911683

RESUMO

The aim of this study was to compare the antibacterial effects of several essential oils (EOs) alone and in combination against different Gram-positive and Gram-negative bacteria associated with food products. Parsley, lovage, basil, and thyme EOs, as well as their mixtures (1:1, v/v), were tested against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium. The inhibitory effects ranged from strong (thyme EO against E. coli) to no inhibition (parsley EO against P. aeruginosa). Thyme EO exhibited strong (against E. coli), moderate (against S. typhimurium and B. cereus), or mild inhibitory effects (against P. aeruginosa and S. aureus), and basil EO showed mild (against E. coli and B. cereus) or no inhibitory effects (against S. typhimurium, P. aeruginosa, and S. aureus). Parsley and lovage EOs revealed no inhibitory effects against all tested strains. Combinations of lovage/thyme and basil/thyme EOs displayed antagonistic effects against all bacteria, parsley/thyme EOs against B. cereus, S. aureus, P. aeruginosa, and E. coli, and lovage/basil EOs against B. cereus and E. coli. Combinations of parsley/lovage and parsley/basil EOs exhibited indifferent effects against all bacteria. The combination of lovage/basil EO showed indifferent effect against S. aureus, P. aeruginosa, and S. typhimurium, and the combination parsley/thyme EO against S. typhimurium. Thyme EO has the highest percentage yield and antibacterial potential from all tested formulations; its combination with parsley, lovage, and basil EOs determines a reduction of its antibacterial activity. Hence, it is recommended to be used alone as the antibacterial agent.


Assuntos
Antibacterianos/farmacologia , Escherichia coli , Microbiologia de Alimentos , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Óleos Voláteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA