RESUMO
PURPOSE: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. EXPERIMENTAL DESIGN: Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). RESULTS: Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucose-derived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. CONCLUSIONS: Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK-mediated aggressive disease phenotypes.
Assuntos
Proteína Quinase Ativada por DNA , Neoplasias de Próstata Resistentes à Castração , DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Glicólise , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Proteômica , Piruvato Quinase/metabolismoRESUMO
The retinoblastoma tumor suppressor (RB) is a critical regulator of E2F-dependent transcription, controlling a multitude of protumorigenic networks including but not limited to cell-cycle control. Here, genome-wide assessment of E2F1 function after RB loss in isogenic models of prostate cancer revealed unexpected repositioning and cooperation with oncogenic transcription factors, including the major driver of disease progression, the androgen receptor (AR). Further investigation revealed that observed AR/E2F1 cooperation elicited novel transcriptional networks that promote cancer phenotypes, especially as related to evasion of cell death. These observations were reflected in assessment of human disease, indicating the clinical relevance of the AR/E2F1 cooperome in prostate cancer. Together, these studies reveal new mechanisms by which RB loss induces cancer progression and highlight the importance of understanding the targets of E2F1 function. SIGNIFICANCE: This study identifies that RB loss in prostate cancer drives cooperation between AR and E2F1 as coregulators of transcription, which is linked to the progression of advanced disease.
Assuntos
Carcinogênese/genética , Fator de Transcrição E2F1/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/genética , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Estudos de Coortes , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteínas Oncogênicas/genética , Oncogenes , Neoplasias da Próstata/patologia , Ligação Proteica/genética , Proteínas de Ligação a Retinoblastoma/genética , Transfecção , Ubiquitina-Proteína Ligases/genéticaRESUMO
In response to DNA double-strand breaks, MAD2L2-containing shieldin complex plays a critical role in the choice between homologous recombination (HR) and non-homologous end-joining (NHEJ)-mediated repair. Here we show that EZH2 inhibition upregulates MAD2L2 and sensitizes HR-proficient epithelial ovarian cancer (EOC) to poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor in a CARM1-dependent manner. CARM1 promotes MAD2L2 silencing by driving the switch from the SWI/SNF complex to EZH2 through methylating the BAF155 subunit of the SWI/SNF complex on the MAD2L2 promoter. EZH2 inhibition upregulates MAD2L2 to decrease DNA end resection, which increases NHEJ and chromosomal abnormalities, ultimately causing mitotic catastrophe in PARP inhibitor treated HR-proficient cells. Significantly, EZH2 inhibitor sensitizes CARM1-high, but not CARM-low, EOCs to PARP inhibitors in both orthotopic and patient-derived xenografts.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Recombinação Homóloga/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/uso terapêutico , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Neoplasias Ovarianas/genética , Proteína-Arginina N-Metiltransferases/efeitos dos fármacos , Reparo de DNA por Recombinação/efeitos dos fármacosRESUMO
Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder characterized by the development of multiple tumors in the central nervous system, most notably schwannomas, and meningiomas. Mutational inactivation of the NF2 gene encoding the protein Merlin is found in most sporadic and inherited schwannomas, but the molecular mechanisms underlying neoplastic changes in schwannoma cells remain unclear. We report here that Nf2-deficient cells display elevated expression levels of key enzymes involved in lipogenesis and that this upregulation is caused by increased activity of Torc1. Inhibition or knockdown of fatty acid synthase (FASN), the enzyme that catalyzes the formation of palmitic acid from malonyl-CoA, drove NF2-deficient cells into apoptosis. Treatment of NF2-mutant cells with agents that inhibit the production of malonyl-CoA reduced their sensitivity to FASN inhibitors. Collectively, these results suggest that the altered lipid metabolism found in NF2-mutant cells renders them sensitive to elevated levels of malonyl-CoA, as occurs following blockade of FASN, suggesting new targeted strategies in the treatment of NF2-deficient tumors. Cancer Res; 77(18); 5026-38. ©2017 AACR.
Assuntos
Biomarcadores Tumorais/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/metabolismo , Meningioma/patologia , Complexos Multiproteicos/metabolismo , Neurilemoma/patologia , Neurofibromina 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Ácido Graxo Sintase Tipo I/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Lipogênese , Alvo Mecanístico do Complexo 1 de Rapamicina , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/metabolismo , Camundongos , Camundongos Nus , Complexos Multiproteicos/genética , Neurilemoma/genética , Neurilemoma/metabolismo , Neurofibromina 2/genética , Ratos , Taxa de Sobrevida , Serina-Treonina Quinases TOR/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
p21-Activated kinase 1 (PAK1) has attracted much attention as a potential therapeutic target due to its central role in many oncogenic signaling pathways, its frequent dysregulation in cancers and neurological disorders, and its tractability as a target for small-molecule inhibition. To date, several PAK1-targeting compounds have been developed as preclinical agents, including one that has been evaluated in a clinical trial. A series of ATP-competitive inhibitors, allosteric inhibitors and peptide inhibitors with distinct biochemical and pharmacokinetic properties represent useful laboratory tools for studies on the role of PAK1 in biology and in disease contexts, and could lead to promising therapeutic agents. Given the central role of PAK1 in vital signaling pathways, future clinical development of PAK1 inhibitors will require careful investigation of their safety and efficacy.
Assuntos
Inibidores Enzimáticos/uso terapêutico , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Quinases Ativadas por p21/antagonistas & inibidores , Domínio Catalítico , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Terapia de Alvo Molecular/tendências , Neoplasias/enzimologia , Neoplasias/patologia , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/patologia , Transdução de Sinais/efeitos dos fármacos , Quinases Ativadas por p21/química , Quinases Ativadas por p21/metabolismoRESUMO
The variable manifestation of phenotypes that occur in patients with neurofibromatosis type 1 (NF1) includes benign and malignant neurocutaneous tumors for which no adequate treatment exists. Cell-based screening of known bioactive compounds library identified the protein phosphatase 2A (PP2A) inhibitor Cantharidin and the L-type calcium channel blocker Nifedipine as potential candidates for NF1 pharmacotherapy. Validation of screening results using human NF1-associated malignant peripheral nerve sheath tumor (MPNST) cells showed that Cantharidin effectively impeded MPNST cell growth, while Nifedipine treatment significantly decreased local tumor growth in an MPNST xenograft animal model. These data suggest that inhibitors of PP2A, as well as calcium channel blockers, might be used in broader MPNST preclinical studies as single agents or in combinatorial therapeutic strategies.
Assuntos
Cantaridina/uso terapêutico , Nifedipino/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Cantaridina/efeitos adversos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Nus , Neoplasias de Bainha Neural/tratamento farmacológico , Neurofibromatose 1 , Nifedipino/efeitos adversos , Proteína Fosfatase 2/antagonistas & inibidores , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The acute effects of three typical polyaromatic hydrocarbons (PAHs): naphthalene (Naph), phenanthrene (Phen) and fluoranthene (Flu) on photochemical activity of photosystem II (PSII) in detached leaves of 3-week-old pea plants were studied. The leaves were exposed in water with PAHs under white light for 0.5-72 h. The activity of PSII was examined by prompt and delayed chlorophyll a (Chl a) fluorescence. The effects of PAHs depended on their concentration and exposure time. This dependency was more significant in the presence of chemical stressors (Triton X-100 or acetone) or under high intensity irradiance. Increased content of PAHs and long-term exposure (24-72 h) led to significant reduction of the maximum photochemical quantum efficiency (Fv/Fm) of PS II, changes in the polyphasic fluorescence induction (OJIP), and to decreasing amplitudes of fast and slow components of delayed Chl a fluorescence. The damage of PSII depended on water solubility of a given type of PAHs, their concentration and exposure time. During short-time exposure the compound with highest water-solubility - naphthalene - revealed the strongest effect. During long-time exposure the compounds with low water-solubility -Phen, Flu-revealed the strongest effect as the corresponding PAH accumulates in the thylakoids especially when the solution is oversaturated containing a solid phase. The reduction of PSII activity at the presence of naphthalene (30 mg L(-1)) was accompanied by transient generation of H2O2 as well as swelling of thylakoids and distortion of cell plasma membranes, which was indicated by electron microscopy images. Distortion of thylakoid membranes due to accumulation of PAHs as well as the development of oxidative stress seems to be the main pathways of PAHs influencing the photochemical activity of PS II.
Assuntos
Fluorenos/farmacologia , Naftalenos/farmacologia , Fenantrenos/farmacologia , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Pisum sativum/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Clorofila/metabolismo , Clorofila A , Fluorenos/química , Fluorescência , Peróxido de Hidrogênio/metabolismo , Luz , Microscopia Eletrônica , Naftalenos/química , Estresse Oxidativo , Pisum sativum/metabolismo , Pisum sativum/efeitos da radiação , Pisum sativum/ultraestrutura , Fenantrenos/química , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Hidrocarbonetos Policíclicos Aromáticos/química , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismoRESUMO
p21-Activated kinases (PAKs) are positioned at the nexus of several oncogenic signalling pathways. Overexpression or mutational activation of PAK isoforms frequently occurs in various human tumours, and recent data suggest that excessive PAK activity drives many of the cellular processes that are the hallmarks of cancer. In this Review, we discuss the mechanisms of PAK activation in cancer, the key substrates that mediate the developmental and oncogenic effects of this family of kinases, and how small-molecule inhibitors of these enzymes might be best developed and deployed for the treatment of cancer.