Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37990867

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant condition caused by germline mutations in the neurofibromin 1 (NF1) gene. Children with NF1 are prone to the development of multiple nervous system abnormalities, including autism and brain tumors, which could reflect the effect of NF1 mutation on microglia function. Using heterozygous Nf1-mutant mice, we previously demonstrated that impaired purinergic signaling underlies deficits in microglia process extension and phagocytosis in situ. To determine whether these abnormalities are also observed in human microglia in the setting of NF1, we leveraged an engineered isogenic series of human induced pluripotent stem cells to generate human microglia-like (hiMGL) cells heterozygous for three different NF1 gene mutations found in patients with NF1. Whereas all NF1-mutant and isogenic control hiMGL cells expressed classical microglia markers and exhibited similar transcriptomes and cytokine/chemokine release profiles, only NF1-mutant hiMGL cells had defects in P2X receptor activation, phagocytosis and motility. Taken together, these findings indicate that heterozygous NF1 mutations impair a subset of the functional properties of human microglia, which could contribute to the neurological abnormalities seen in children with NF1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurofibromatose 1 , Animais , Humanos , Camundongos , Genes da Neurofibromatose 1 , Microglia/patologia , Mutação/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética
2.
Acta Neuropathol Commun ; 11(1): 36, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36890585

RESUMO

We previously discovered a sex-by-genotype defect in microglia function using a heterozygous germline knockout mouse model of Neurofibromatosis type 1 (Nf1 ± mice), in which only microglia from male Nf1 ± mice exhibited defects in purinergic signaling. Herein, we leveraged an unbiased proteomic approach to demonstrate that male, but not female, heterozygous Nf1 ± microglia exhibit differences in protein expression, which largely reflect pathways involved in cytoskeletal organization. In keeping with these predicted defects in cytoskeletal function, only male Nf1 ± microglia had reduced process arborization and surveillance capacity. To determine whether these microglial defects were cell autonomous or reflected adaptive responses to Nf1 heterozygosity in other cells in the brain, we generated conditional microglia Nf1-mutant knockout mice by intercrossing Nf1flox/flox with Cx3cr1-CreER mice (Nf1flox/wt; Cx3cr1-CreER mice, Nf1MG ± mice). Surprisingly, neither male nor female Nf1MG ± mouse microglia had impaired process arborization or surveillance capacity. In contrast, when Nf1 heterozygosity was generated in neurons, astrocytes and oligodendrocytes by intercrossing Nf1flox/flox with hGFAP-Cre mice (Nf1flox/wt; hGFAP-Cre mice, Nf1GFAP ± mice), the microglia defects found in Nf1 ± mice were recapitulated. Collectively, these data reveal that Nf1 ± sexually dimorphic microglia abnormalities are likely not cell-intrinsic properties, but rather reflect a response to Nf1 heterozygosity in other brain cells.


Assuntos
Neurofibromatose 1 , Camundongos , Masculino , Animais , Neurofibromatose 1/genética , Microglia/metabolismo , Proteômica , Camundongos Knockout , Encéfalo/metabolismo
3.
Exp Cell Res ; 396(2): 112323, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058832

RESUMO

Aquaporin 1 (AQP1), a transmembrane protein that forms water channels, has previously been shown to facilitate growth and progression of many types of tumors by modulating tumor cell migration, proliferation and angiogenesis. Here, we determined the impact of AQP1 expression in the tumor environment on the progression of brain tumors. Primary microglia from wild type(WT) and AQP1 knockout(KO) mice were used to test AQP1 effect on microglia function by using Western blot, quantative PCR, in an experimental in vivo mouse glioma model and organotypic brain slice culture. Deletion of AQP1 in the host tissue significantly reduced the survival of the mice implanted with GL261 glioma cells. The density of glioma-associated microglia/macrophages was almost doubled in AQP1KO mice. We found that factors secreted from GL261 cells decrease microglial AQP1 expression via the MEK/ERK pathway, and that inhibition of this pathway with Trametinib reduced tumor growth and prolonged the survival of tumor bearing mice, an effect which required the presence of microglia. Deletion of AQP1 in cultured microglia resulted in an increase in migratory activity and a decrease in TLR4-dependent innate immune responses. Our study demonstrates a functional relevance of AQP1 expression in microglia and hints to AQP1 as a potential novel target for glioma therapy.


Assuntos
Aquaporina 1/genética , Neoplasias Encefálicas/patologia , Regulação para Baixo/genética , Glioma/patologia , Microglia/patologia , Animais , Aquaporina 1/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fenótipo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Células RAW 264.7
4.
Neurobiol Dis ; 144: 105030, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32736084

RESUMO

As critical regulators of brain homeostasis, microglia are influenced by numerous factors, including sex and genetic mutations. To study the impact of these factors on microglia biology, we employed genetically engineered mice that model Neurofibromatosis type 1 (NF1), a disorder characterized by clinically relevant sexually dimorphic differences. While microglia phagocytic activity was reduced in both male and female heterozygous Nf1 mutant (Nf1+/-) mice, purinergic control of phagocytosis was only affected in male Nf1+/- mice. ATP-induced P2Y-mediated membrane currents and P2RY12-dependent laser lesion-induced accumulation of microglial processes were also only impaired in male, but not female Nf1+/-, microglia. These defects resulted from Nf1+/- male-specific defects in cyclic AMP regulation, rather than from changes in purinergic receptor expression. Cyclic AMP elevation by phosphodiesterase blockade restored the male Nf1+/- microglia defects in P2Y-dependent membrane currents and process motility. Taken together, these data establish a sex-by-genotype interaction important to microglia function in the adult mouse brain.


Assuntos
AMP Cíclico/metabolismo , Microglia/metabolismo , Neurofibromatose 1/metabolismo , Neurofibromina 1/genética , Fagocitose/genética , Animais , Feminino , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Microglia/fisiologia , Microscopia Confocal , Mutação , Neurofibromatose 1/genética , Neurofibromatose 1/fisiopatologia , Técnicas de Patch-Clamp , Fagocitose/fisiologia , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Caracteres Sexuais , Fatores Sexuais
5.
Acta Neuropathol Commun ; 8(1): 1, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915069

RESUMO

The original publication of this article [1] contained 3 minor errors in Figs. 1, 3 and 5. In this correction article the updated figures are published. The figure captions describe the updated information in these figures.

6.
Cell Rep ; 29(11): 3460-3471.e7, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825829

RESUMO

Microglia express Toll-like receptors (TLRs) that sense pathogen- and host-derived factors, including single-stranded RNA. In the brain, let-7 microRNA (miRNA) family members are abundantly expressed, and some have recently been shown to serve as TLR7 ligands. We investigated whether let-7 miRNA family members differentially control microglia biology in health and disease. We found that a subset of let-7 miRNA family members function as signaling molecules to induce microglial release of inflammatory cytokines, modulate antigen presentation, and attenuate cell migration in a TLR7-dependent manner. The capability of the let-7 miRNAs to control microglial function is sequence specific, mapping to a let-7 UUGU motif. In human and murine glioblastoma/glioma, let-7 miRNAs are differentially expressed and reduce murine GL261 glioma growth in the same sequence-specific fashion through microglial TLR7. Taken together, these data establish let-7 miRNAs as key TLR7 signaling activators that serve to regulate the diverse functions of microglia in health and glioma.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Receptor 7 Toll-Like/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo
7.
Brain Behav Immun ; 81: 470-483, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271872

RESUMO

Tenascin C (Tnc) is an extracellular matrix glycoprotein, expressed in the CNS during development, as well as in the setting of inflammation, fibrosis and cancer, which operates as an activator of Toll-like receptor 4 (TLR4). Although TLR4 is highly expressed in microglia, the effect of Tnc on microglia has not been elucidated to date. Herein, we demonstrate that Tnc regulates microglial phagocytic activity at an early postnatal age (P4), and that this process is partially dependent on microglial TLR4 expression. We further show that Tnc regulates proinflammatory cytokine/chemokine production, chemotaxis and phagocytosis in primary microglia in a TLR4-dependent fashion. Moreover, Tnc induces histone-deacetylase 1 (HDAC1) expression in microglia, such that HDAC1 inhibition by MS-275 decreases Tnc-induced microglial IL-6 and TNF-α production. Finally, Tnc-/- cortical microglia have reduced HDAC1 expression levels at P4. Taken together, these findings establish Tnc as a regulator of microglia function during early postnatal development.


Assuntos
Histona Desacetilase 1/metabolismo , Microglia/metabolismo , Tenascina/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Animais Recém-Nascidos , Matriz Extracelular/metabolismo , Feminino , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/fisiologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Acta Neuropathol Commun ; 7(1): 20, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30764877

RESUMO

Monocytes/macrophages have begun to emerge as key cellular modulators of brain homeostasis and central nervous system (CNS) disease. In the healthy brain, resident microglia are the predominant macrophage cell population; however, under conditions of blood-brain barrier leakage, peripheral monocytes/macrophages can infiltrate the brain and participate in CNS disease pathogenesis. Distinguishing these two populations is often challenging, owing to a paucity of universally accepted and reliable markers. To identify discriminatory marker sets for microglia and peripheral monocytes/macrophages, we employed a large meta-analytic approach using five published murine transcriptional datasets. Following hierarchical clustering, we filtered the top differentially expressed genes (DEGs) through a brain cell type-specific sequencing database, which led to the identification of eight microglia and eight peripheral monocyte/macrophage markers. We then validated their differential expression, leveraging a published single cell RNA sequencing dataset and quantitative RT-PCR using freshly isolated microglia and peripheral monocytes/macrophages from two different mouse strains. We further verified the translation of these DEGs at the protein level. As top microglia DEGs, we identified P2ry12, Tmem119, Slc2a5 and Fcrls, whereas Emilin2, Gda, Hp and Sell emerged as the best DEGs for identifying peripheral monocytes/macrophages. Lastly, we evaluated their utility in discriminating monocyte/macrophage populations in the setting of brain pathology (glioma), and found that these DEG sets distinguished glioma-associated microglia from macrophages in both RCAS and GL261 mouse models of glioblastoma. Taken together, this unbiased bioinformatic approach facilitated the discovery of a robust set of microglia and peripheral monocyte/macrophage expression markers to discriminate these monocyte populations in both health and disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Expressão Gênica , Glioma/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Animais , Biomarcadores/metabolismo , Neoplasias Encefálicas/genética , Modelos Animais de Doenças , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Masculino , Camundongos Endogâmicos C57BL
9.
Genes Dev ; 32(7-8): 491-496, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29632086

RESUMO

Pediatric low-grade gliomas (LGGs) frequently do not engraft in immunocompromised mice, limiting their use as an experimental platform. In contrast, murine Neurofibromatosis-1 (Nf1) optic LGG stem cells (o-GSCs) form glioma-like lesions in wild-type, but not athymic, mice following transplantation. Here, we show that the inability of athymic mice to support o-GSC engraftment results from impaired microglia/macrophage function, including reduced expression of Ccr2 and Ccl5, both of which are required for o-GSC engraftment and Nf1 optic glioma growth. Impaired Ccr2 and Ccl5 expression in athymic microglia/macrophages was restored by T-cell exposure, establishing T-cell-microglia/macrophage interactions as critical stromal determinants that support NF1 LGG growth.


Assuntos
Glioma/imunologia , Microglia/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Células Cultivadas , Quimiocina CCL5/biossíntese , Quimiocina CCL5/genética , Quimiocina CCL5/fisiologia , Expressão Gênica , Genes da Neurofibromatose 1 , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Microglia/metabolismo , Microglia/patologia , Receptores CCR2/genética , Receptores CCR2/metabolismo
10.
J Clin Invest ; 127(12): 4365-4378, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106383

RESUMO

Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism characterized by neurodegeneration and death in early childhood. The rapid and progressive neurodegeneration in MoCD presents a major clinical challenge and may relate to the poor understanding of the molecular mechanisms involved. Recently, we reported that treating patients with cyclic pyranopterin monophosphate (cPMP) is a successful therapy for a subset of infants with MoCD and prevents irreversible brain damage. Here, we studied S-sulfocysteine (SSC), a structural analog of glutamate that accumulates in the plasma and urine of patients with MoCD, and demonstrated that it acts as an N-methyl D-aspartate receptor (NMDA-R) agonist, leading to calcium influx and downstream cell signaling events and neurotoxicity. SSC treatment activated the protease calpain, and calpain-dependent degradation of the inhibitory synaptic protein gephyrin subsequently exacerbated SSC-mediated excitotoxicity and promoted loss of GABAergic synapses. Pharmacological blockade of NMDA-R, calcium influx, or calpain activity abolished SSC and glutamate neurotoxicity in primary murine neurons. Finally, the NMDA-R antagonist memantine was protective against the manifestation of symptoms in a tungstate-induced MoCD mouse model. These findings demonstrate that SSC drives excitotoxic neurodegeneration in MoCD and introduce NMDA-R antagonists as potential therapeutics for this fatal disease.


Assuntos
Sinalização do Cálcio , Cisteína/análogos & derivados , Neurônios GABAérgicos/metabolismo , Erros Inatos do Metabolismo dos Metais/metabolismo , Doenças Neurodegenerativas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cisteína/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/patologia , Células HEK293 , Humanos , Memantina/farmacologia , Erros Inatos do Metabolismo dos Metais/tratamento farmacológico , Erros Inatos do Metabolismo dos Metais/patologia , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Compostos Organofosforados/farmacologia , Pterinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/metabolismo , Sinapses/patologia , Compostos de Tungstênio/toxicidade
11.
Neurobiol Aging ; 58: 41-53, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28697378

RESUMO

As the immunocompetent cells of the central nervous system, microglia accumulate at amyloid beta plaques in Alzheimer's disease (AD) and acquire a morphological phenotype of activated microglia. Recent functional studies, however, indicate that in mouse models of amyloidosis and AD, these cells are rather dysfunctional indicated by a reduced phagocytic activity. Here, we report that this reduction in phagocytic activity is associated with perturbed purinergic receptor signaling, since phagocytosis could be stimulated by P2Y6 receptor activation in control, but not in 5xFAD transgenic animals, an animal model of amyloid deposition. Impaired phagocytosis is not innate, and develops only at later stages of amyloidosis. Furthermore, we show that membrane currents induced by uridine diphosphate, a ligand activating P2Y6 receptors, are altered in response rate and amplitude in microglia in close vicinity to plaques, but not in plaque-free areas of 5xFAD animals. These changes were accompanied by changes in membrane properties and potassium channel activity of plaque-associated microglia in early and late stages of amyloidosis. As a conclusion, the physiological properties of plaque-associated microglia are altered with a strong impact on purinergic signaling.


Assuntos
Doença de Alzheimer/imunologia , Microglia/imunologia , Fagocitose/imunologia , Canais de Potássio/imunologia , Receptores Purinérgicos/imunologia , Transdução de Sinais/imunologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/metabolismo
12.
Cell Calcium ; 60(6): 396-406, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27697289

RESUMO

Microglia are the resident immune cells in the central nervous system and many of their physiological functions are known to be linked to intracellular calcium (Ca2+) signaling. Here we show that isolated and purified mouse microglia-either freshly or cultured-display spontaneous and transient Ca2+ elevations lasting for around ten to twenty seconds and occurring at frequencies of around five to ten events per hour and cell. The events were absent after depletion of internal Ca2+ stores, by phospholipase C (PLC) inhibition or blockade of inositol-1,4,5-trisphosphate receptors (IP3Rs), but not by removal of extracellular Ca2+, indicating that Ca2+ is released from endoplasmic reticulum intracellular stores. We furthermore provide evidence that autocrine ATP release and subsequent activation of purinergic P2Y receptors is not the trigger for these events. Spontaneous Ca2+ transients did also occur after stimulation with Lipopolysaccharide (LPS) and in glioma-associated microglia, but their kinetics differed from control conditions. We hypothesize that spontaneous Ca2+ transients reflect aspects of cellular homeostasis that are linked to regular and patho-physiological functions of microglia.


Assuntos
Cálcio/metabolismo , Microglia/metabolismo , Animais , Células Cultivadas , Cinética , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos
13.
PLoS Biol ; 12(7): e1001908, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25025157

RESUMO

Postsynaptic scaffolding proteins regulate coordinated neurotransmission by anchoring and clustering receptors and adhesion molecules. Gephyrin is the major instructive molecule at inhibitory synapses, where it clusters glycine as well as major subsets of GABA type A receptors (GABAARs). Here, we identified palmitoylation of gephyrin as an important mechanism of strengthening GABAergic synaptic transmission, which is regulated by GABAAR activity. We mapped palmitoylation to Cys212 and Cys284, which are critical for both association of gephyrin with the postsynaptic membrane and gephyrin clustering. We identified DHHC-12 as the principal palmitoyl acyltransferase that palmitoylates gephyrin. Furthermore, gephyrin pamitoylation potentiated GABAergic synaptic transmission, as evidenced by an increased amplitude of miniature inhibitory postsynaptic currents. Consistently, inhibiting gephyrin palmitoylation either pharmacologically or by expression of palmitoylation-deficient gephyrin reduced the gephyrin cluster size. In aggregate, our study reveals that palmitoylation of gephyrin by DHHC-12 contributes to dynamic and functional modulation of GABAergic synapses.


Assuntos
Aciltransferases/fisiologia , Proteínas de Transporte/metabolismo , Lipoilação/fisiologia , Proteínas de Membrana/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Sinapses/fisiologia , Animais , Cisteína/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Ácido gama-Aminobutírico
14.
J Cell Sci ; 127(Pt 17): 3687-98, 2014 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-24994934

RESUMO

The neuronal function of Cys-loop neurotransmitter receptors is established; however, their role in non-neuronal cells is poorly defined. As brain tumors are enriched in the neurotransmitter glycine, we studied the expression and function of glycine receptors (GlyRs) in glioma cells. Human brain tumor biopsies selectively expressed the GlyR α1 and α3 subunits, which have nuclear localization signals (NLSs). The mouse glioma cell line GL261 expressed GlyR α1, and knockdown of GlyR α1 protein expression impaired the self-renewal capacity and tumorigenicity of GL261 glioma cells, as shown by a neurosphere assay and GL261 cell inoculation in vivo, respectively. We furthermore showed that the pronounced tumorigenic effect of GlyR α1 relies on a new intracellular signaling function that depends on the NLS region in the large cytosolic loop and impacts on GL261 glioma cell gene regulation. Stable expression of GlyR α1 and α3 loops rescued the self-renewal capacity of GlyR α1 knockdown cells, which demonstrates their functional equivalence. The new intracellular signaling function identified here goes beyond the well-established role of GlyRs as neuronal ligand-gated ion channels and defines NLS-containing GlyRs as new potential targets for brain tumor therapies.


Assuntos
Citoplasma/metabolismo , Glioma/metabolismo , Receptores de Glicina/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glioma/patologia , Glicina/metabolismo , Humanos , Camundongos , Receptores de Glicina/genética
15.
Front Cell Neurosci ; 8: 164, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987332

RESUMO

Synaptic communication requires constant adjustments of pre- and postsynaptic efficacies. In addition to synaptic long term plasticity, the presynaptic machinery underlies homeostatic regulations which prevent out of range transmitter release. In this minireview we will discuss the relevance of selected presynaptic mechanisms to epilepsy including voltage- and ligand-gated ion channels as well as cannabinoid and adenosine receptor signaling.

16.
PLoS One ; 5(5): e10580, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20485495

RESUMO

Several Ca(2+)-permeable channels, including the non-selective cation channel TRPV4, are subject to Ca(2+)-dependent facilitation. Although it has been clearly demonstrated in functional experiments that calmodulin (CaM) binding to intracellular domains of TRP channels is involved in this process, the molecular mechanism remains elusive. In this study, we provide experimental evidence for a comprehensive molecular model that explains Ca(2+)-dependent facilitation of TRPV4. In the resting state, an intracellular domain from the channel N terminus forms an autoinhibitory complex with a C-terminal domain that includes a high-affinity CaM binding site. CaM binding, secondary to rises in intracellular Ca(2+), displaces the N-terminal domain which may then form a homologous interaction with an identical domain from a second subunit. This represents a novel potentiation mechanism that may also be relevant in other Ca(2+)-permeable channels.


Assuntos
Cálcio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Bioensaio , Calmodulina/metabolismo , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutação/genética , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA