Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 103(9): 100190, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268107

RESUMO

Glomerulonephritis (GN) is a group of inflammatory diseases and an important cause of morbidity and mortality worldwide. The initiation of the inflammatory process is quite different for each type of GN; however, each GN is characterized commonly and variably by acute inflammation with neutrophils and macrophages and crescent formation, leading to glomerular death. Toll-like receptor (TLR) 7 is a sensor for self-RNA and implicated in the pathogenesis of human and murine GN. Here, we show that TLR7 exacerbates glomerular injury in nephrotoxic serum nephritis (NTN), a murine model of severe crescentic GN. TLR7-/- mice were resistant to NTN, although TLR7-/- mice manifested comparable immune-complex deposition to wild-type mice without significant defects in humoral immunity, suggesting that endogenous TLR7 ligands accelerate glomerular injury. TLR7 was expressed exclusively in macrophages in glomeruli in GN but not in glomerular resident cells or neutrophils. Furthermore, we discovered that epidermal growth factor receptor (EGFR), a receptor-type tyrosine kinase, is essential for TLR7 signaling in macrophages. Mechanistically, EGFR physically interacted with TLR7 upon TLR7 stimulation, and EGFR inhibitor completely blocked the phosphorylation of TLR7 tyrosine residue(s). EGFR inhibitor attenuated glomerular damage in wild-type mice, and no additional glomerular protective effects by EGFR inhibitor were observed in TLR7-/- mice. Finally, mice lacking EGFR in macrophages were resistant to NTN. This study clearly demonstrated that EGFR-dependent TLR7 signaling in macrophages is essential for glomerular injury in crescentic GN.


Assuntos
Fator de Crescimento Epidérmico , Glomerulonefrite , Camundongos , Humanos , Animais , Receptor 7 Toll-Like , Receptores ErbB , Macrófagos/metabolismo
2.
J Interferon Cytokine Res ; 43(5): 189-193, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37093156

RESUMO

Many pattern recognition receptors in mammalian cells initiate signaling processes that culminate in mounting an innate protective response mediated by induced synthesis of a large number of proteins including type I interferons and other cytokines. Many of these receptors are not located on the plasma membrane but on the membranes of intracellular organelles such as endosomes, mitochondria, and the endoplasmic reticulum; they primarily recognize microbial or cellular nucleic acids. In the course of biochemical analyses of the signaling pathways triggered by these receptors, we discovered that they require tyrosine phosphorylation by the protein kinase activity of the epidermal growth factor receptor (EGFR), which is located not only on the plasma membrane but also on the intracellular membranes. Here, we discuss how specific members of this family of receptors, such as TLR3, TLR9, or STING, interact with EGFR and other protein tyrosine kinases and what are the functional consequences of their post-translational modifications. The article highlights an unexpected functional link between a growth factor receptor and cellular innate immune response.


Assuntos
Receptores ErbB , Tirosina , Animais , Fosforilação , Tirosina/metabolismo , Receptores ErbB/metabolismo , Proteínas Tirosina Quinases/metabolismo , Citocinas/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Reconhecimento de Padrão/metabolismo , Mamíferos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(16): e2216953120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036972

RESUMO

In cancer cells, endogenous or therapy-induced DNA damage leads to the abnormal presence of DNA in the cytoplasm, which triggers the activation of cGAS (cyclic GMP-AMP synthase) and STING (stimulator of interferon genes). STAT2 suppresses the cGAMP-induced expression of IRF3-dependent genes by binding to STING, blocking its intracellular trafficking, which is essential for the full response to STING activation. STAT2 reshapes STING signaling by inhibiting the induction of IRF3-dependent, but not NF-κB-dependent genes. This noncanonical activity of STAT2 is regulated independently of its tyrosine phosphorylation but does depend on the phosphorylation of threonine 404, which promotes the formation of a STAT2:STING complex that keeps STING bound to the endoplasmic reticulum (ER) and increases resistance to DNA damage. We conclude that STAT2 is a key negative intracellular regulator of STING, a function that is quite distinct from its function as a transcription factor.


Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT2 , DNA/metabolismo , Dano ao DNA , Nucleotidiltransferases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fator de Transcrição STAT2/metabolismo , Proteínas de Membrana/metabolismo
4.
mBio ; 12(6): e0322821, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34933455

RESUMO

The nature and the intensity of innate immune response to virus infection determine the course of pathogenesis in the host. Among the many pathogen-associated molecular pattern recognition receptors, STING, an endoplasmic reticulum (ER)-associated protein, plays a pivotal role in triggering responses to microbial or cellular cytoplasmic DNA. Herpes simplex virus 1 (HSV-1), a common human pathogen, activates STING signaling, and the resultant induction of type I interferon causes inhibition of virus replication. In this context, we have observed that phosphorylation of Tyr245 of STING by epidermal growth factor receptor kinase is necessary for interferon induction. Here, we report that phosphorylation of Tyr240 by the tyrosine kinase Syk is essential for all signaling activities of STING. Our analysis showed that upon ligand-binding, STING dimerizes and interacts with membrane-bound EGFR, which autophosphorylates and provides the platform for the recruitment of cytoplasmic Syk to the signaling complex and its activation. Activated Syk phosphorylates Tyr240 of STING, followed by phosphorylation of Tyr245 by epidermal growth factor receptor (EGFR). Pharmacological or genetic ablation of Syk activity resulted in an arrest of STING in the ER compartment and a complete block of gene induction. Consequently, in the absence of Syk, HSV-1 could not induce interferon, and it replicated more robustly. IMPORTANCE The innate immune response to virus infection leads to interferon production and inhibition of viral replication. STING, an ER-bound protein, mediates such a response to cytoplasmic cellular or microbial DNA. HSV-1, a DNA virus, activates STING, and it replicates more efficiently in the absence of STING signaling. We demonstrate that phosphorylation of Tyr240 of STING by the protein tyrosine kinase Syk is essential for STING-mediated gene induction. To signal, ligand-activated STING recruits two kinases, Syk and EGFR, which phosphorylate Tyr240 and Tyr245, respectively. The dependence of STING signaling on Syk has broad significance, because STING plays a major role in many microbial, mitochondrial, and autoimmune diseases as well as in cancer development and therapy.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Quinase Syk/metabolismo , Motivos de Aminoácidos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Humanos , Interferon beta/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fosforilação , Quinase Syk/genética , Replicação Viral
5.
PLoS Pathog ; 17(9): e1009950, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591940

RESUMO

STING is a nodal point for cellular innate immune response to microbial infections, autoimmunity and cancer; it triggers the synthesis of the antiviral proteins, type I interferons. Many DNA viruses, including Herpes Simplex Virus 1 (HSV1), trigger STING signaling causing inhibition of virus replication. Here, we report that HSV1 evades this antiviral immune response by inducing a cellular microRNA, miR-24, which binds to the 3' untranslated region of STING mRNA and inhibits its translation. Expression of the gene encoding miR-24 is induced by the transcription factor AP1 and activated by MAP kinases in HSV1-infected cells. Introduction of exogenous miR-24 or prior activation of MAPKs, causes further enhancement of HSV1 replication in STING-expressing cells. Conversely, transfection of antimiR-24 inhibits virus replication in those cells. HSV1 infection of mice causes neuropathy and death; using two routes of infection, we demonstrated that intracranial injection of antimiR-24 alleviates both morbidity and mortality of the infected mice. Our studies reveal a new immune evasion strategy adopted by HSV1 through the regulation of STING and demonstrates that it can be exploited to enhance STING's antiviral action.


Assuntos
Herpes Simples/imunologia , Evasão da Resposta Imune/imunologia , Proteínas de Membrana/imunologia , MicroRNAs/imunologia , Animais , Regulação da Expressão Gênica/imunologia , Herpes Simples/metabolismo , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Celular/imunologia , Proteínas de Membrana/metabolismo , Camundongos
6.
EMBO J ; 39(22): e104106, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32926474

RESUMO

STING (STimulator of INterferon Genes) mediates protective cellular response to microbial infection and tissue damage, but its aberrant activation can lead to autoinflammatory diseases. Upon ligand stimulation, the endoplasmic reticulum (ER) protein STING translocates to endosomes for induction of interferon production, while an alternate trafficking route delivers it directly to the autophagosomes. Here, we report that phosphorylation of a specific tyrosine residue in STING by the epidermal growth factor receptor (EGFR) is required for directing STING to endosomes, where it interacts with its downstream effector IRF3. In the absence of EGFR-mediated phosphorylation, STING rapidly transits into autophagosomes, and IRF3 activation, interferon production, and antiviral activity are compromised in cell cultures and mice, while autophagic activity is enhanced. Our observations illuminate a new connection between the tyrosine kinase activity of EGFR and innate immune functions of STING and suggest new experimental and therapeutic approaches for selective regulation of STING functions.


Assuntos
Receptores ErbB/metabolismo , Imunidade Inata , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Tirosina/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Receptores ErbB/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Células RAW 264.7 , Transdução de Sinais , Transcriptoma
7.
Elife ; 92020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32175843

RESUMO

The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in Mus musculus embryonic fibroblasts. We found that high stress-induced PACT-PKR activation inhibits the interaction between NF-κB c-Rel and TonEBP essential for the increased expression of TonEBP-dependent osmoprotective genes. This resulted in enhanced formation of TonEBP/NF-κB p65 complexes and enhanced proinflammatory gene expression. These data demonstrate a novel role of c-Rel in the adaptive response to hyperosmotic stress, which is inhibited via a PACT/PKR-dependent dimer redistribution of the Rel family transcription factors. Our results suggest that inhibiting PACT-PKR signaling may prove a novel target for alleviating stress-induced inflammatory diseases.


Cells are sensitive to changes in their environment. For example, maintaining normal salt levels in the blood, also called tonicity, is essential for the health of individual cells and the organism as a whole. Tonicity controls the movement of water in and out of the cell: high levels of salt inside the cell draw water in, while high levels of salt outside the cell draw water out. If salt levels in the environment surrounding the cells become too high, too much water will be drawn out, causing the cells to shrink. Changes in tonicity can cause the cell to become stressed. Initially, cells adapt to this stress by switching on sets of genes that help restore fluid balance and allow the cell to regain its normal shape and size. If the increase in tonicity exceeds tolerable stress levels and harms the cell, this initiates an inflammatory response which ultimately leads to cell death. However, it remained unclear how cells switch from adapting to responding with inflammation. Now, Farabaugh et al. have used an experimental system which mimics high salt to identify the mechanism that allows cells to switch between these two responses. The experiments showed that when salt levels are too high, cells switch on a stress sensing protein called PACT, which activates another protein called PKR. When PACT was deleted from mouse cells, this led to a decrease in the activity of inflammatory genes, and prevented the cells from self-destructing. Other proteins that are involved in the adaptive and inflammatory response are the NF-κB family of proteins and TonEBP. Farabaugh et al. found that under low intensity stress, when salt levels outside the cell are slightly too high, a family member of NF-κB works with TonEBP to switch on adaptive genes. But, if salt levels continue to rise, PACT activates and turns on PKR. This blocks the interaction between NF-κB and TonEBP, allowing another family member of NF-κB to interact with TonEBP instead. This switches the adaptive response off and the inflammatory response on. There are many diseases that involve changes in tonicity, including diabetes, cancer, inflammatory bowel disease, and dry eye syndrome. Understanding the proteins involved in the adaptive and inflammatory response could lead to the development of drugs that help to protect cells from stress-induced damage.


Assuntos
Proteínas de Transporte/metabolismo , Pressão Osmótica , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/metabolismo , Adaptação Fisiológica , Animais , Proteínas de Transporte/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Transdução de Sinais , eIF-2 Quinase/genética
8.
Nat Commun ; 11(1): 900, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060280

RESUMO

Copper levels are known to be elevated in inflamed and malignant tissues. But the mechanism underlying this selective enrichment has been elusive. In this study, we report a axis by which inflammatory cytokines, such as IL-17, drive cellular copper uptake via the induction of a metalloreductase, STEAP4. IL-17-induced elevated intracellular copper level leads to the activation of an E3-ligase, XIAP, which potentiates IL-17-induced NFκB activation and suppresses the caspase 3 activity. Importantly, this IL-17-induced STEAP4-dependent cellular copper uptake is critical for colon tumor formation in a murine model of colitis-associated tumorigenesis and STEAP4 expression correlates with IL-17 level and XIAP activation in human colon cancer. In summary, this study reveals a IL-17-STEAP4-XIAP axis through which the inflammatory response induces copper uptake, promoting colon tumorigenesis.


Assuntos
Colo/imunologia , Neoplasias do Colo/imunologia , Cobre/metabolismo , Proteínas Inibidoras de Apoptose/imunologia , Interleucina-17/imunologia , Proteínas de Membrana/imunologia , Animais , Carcinogênese , Colite/genética , Colite/imunologia , Colite/metabolismo , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Cobre/imunologia , Humanos , Proteínas Inibidoras de Apoptose/genética , Interleucina-17/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Proc Natl Acad Sci U S A ; 115(45): 11531-11536, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30352854

RESUMO

The activation of the epidermal growth factor receptor (EGFR) is crucial for triggering diverse cellular functions, including cell proliferation, migration, and differentiation, and up-regulation of EGFR expression or activity is a key factor in triggering the development of cancer. Here we show that overexpression of a scaffold protein, tumor necrosis factor receptor (TNF-R)-associated factor 4 (TRAF4), promotes EGF-induced autophosphorylation of EGFR (activation) and downstream signaling, whereas TRAF4 deficiency attenuates EGFR activation and EGF-driven cell proliferation. Using structure-based sequence alignment and NMR spectroscopy, we identified a TRAF4 binding site in the C-terminal half of the juxtamembrane (JM) segment of EGFR, a region known to promote asymmetric dimerization and subsequent activation. Deletion of the TRAF4 binding site led to dramatic defects in EGFR activation and EGF-driven cell proliferation. Specific point mutations in the TRAF4 binding site also resulted in significant attenuation of EGFR activation. Detailed structural examination of the inactive versus active forms of EGFR suggests that TRAF4 binding probably induces a conformational rearrangement of the JM region to promote EGFR dimerization. These results identify a novel mechanism of TRAF4-mediated EGFR activation and signaling.


Assuntos
Queratinócitos/metabolismo , Fator 4 Associado a Receptor de TNF/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proliferação de Células , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Células HEK293 , Células HT29 , Células HeLa , Humanos , Queratinócitos/citologia , Camundongos , Camundongos Knockout , Modelos Moleculares , Cultura Primária de Células , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fator 4 Associado a Receptor de TNF/genética , Fator 4 Associado a Receptor de TNF/metabolismo
10.
J Immunol ; 200(8): 2809-2818, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29531172

RESUMO

Mammalian TLRs recognize microbial infection or cell death-associated danger signals and trigger the appropriate cellular response. These responses determine the strength and the outcome of the host-microbe interaction. TLRs are transmembrane proteins located on the plasma or the endosomal membrane. Their ectodomains recognize specific microbial or endogenous ligands, and the cytoplasmic domains interact with specific proteins to activate intracellular signaling pathways. TLR9, an endosomal TLR, is activated by endocytosed DNA. Activated TLR9 recruits the cytoplasmic adapter MyD88 and other signaling proteins to induce the synthesis of inflammatory cytokines and IFN. Uncontrolled activation of TLR9 leads to the undesired overproduction of inflammatory cytokines and consequent pathogenesis. Therefore, appropriate activation and the regulation of TLR9 signaling are critical. Tyrosine (Tyr) phosphorylation of TLR9 is essential for its activation; however, the role of specific Tyr kinases is not clear. In this article, we report that epidermal growth factor receptor (EGFR), a membrane-bound protein Tyr kinase, is essential for TLR9 signaling. Genetic ablation of EGFR or pharmacological inhibition of its kinase activity attenuates TLR9-mediated induction of genes in myeloid and nonmyeloid cell types. EGFR is constitutively bound to TLR9; upon ligand stimulation, it mediates TLR9 Tyr phosphorylation, which leads to the recruitment of MyD88, activation of the signaling kinases and transcription factors, and gene induction. In mice, TLR9-mediated liver injury and death are blocked by an EGFR inhibitor or deletion of the EGFR gene from myeloid cells, which are the major producers of inflammatory cytokines.


Assuntos
Receptores ErbB/metabolismo , Macrófagos/metabolismo , Transdução de Sinais/imunologia , Receptor Toll-Like 9/metabolismo , Animais , Receptores ErbB/imunologia , Humanos , Macrófagos/imunologia , Camundongos , Fosforilação , Receptor Toll-Like 9/imunologia , Tirosina/metabolismo
11.
J Virol ; 91(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637751

RESUMO

Understanding the interactions between rabies virus (RABV) and individual host cell proteins is critical for the development of targeted therapies. Here we report that interferon-induced protein with tetratricopeptide repeats 2 (Ifit2), an interferon-stimulated gene (ISG) with possible RNA-binding capacity, is an important restriction factor for rabies virus. When Ifit2 was depleted, RABV grew more quickly in mouse neuroblastoma cells in vitro This effect was replicated in vivo, where Ifit2 knockout mice displayed a dramatically more severe disease phenotype than wild-type mice after intranasal inoculation of RABV. This increase in pathogenicity correlated to an increase in RABV mRNA and live viral load in the brain, as well as to an accelerated spread to brain regions normally affected by this RABV model. These results suggest that Ifit2 exerts its antiviral effect mainly at the level of viral replication, as opposed to functioning as a mechanism that restricts viral entry/egress or transports RABV particles through axons.IMPORTANCE Rabies is a fatal zoonotic disease with a nearly 100% case fatality rate. Although there are effective vaccines for rabies, this disease still takes the lives of about 50,000 people each year. Victims tend to be children living in regions without comprehensive medical infrastructure who present to health care workers too late for postexposure prophylaxis. The protein discussed in our report, Ifit2, is found to be an important restriction factor for rabies virus, acting directly or indirectly against viral replication. A more nuanced understanding of this interaction may reveal a step of a pathway or site at which the system could be exploited for the development of a targeted therapy.


Assuntos
Encéfalo/virologia , Proteínas/metabolismo , Vírus da Raiva/patogenicidade , Raiva/patologia , Animais , Proteínas Reguladoras de Apoptose , Encéfalo/patologia , Linhagem Celular Tumoral , Feminino , Interferons/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroblastoma/virologia , Proteínas/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Raiva/virologia , Vírus da Raiva/fisiologia , Virulência , Replicação Viral
12.
Protein Cell ; 8(3): 165-168, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27815826

RESUMO

The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR) and Nod-like receptors (NLR), and membrane bound Toll like receptors (TLR) detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN) and interferon stimulated genes (ISGs), which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.


Assuntos
Apoptose , Proteína DEAD-box 58/imunologia , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Viroses/imunologia , Animais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Receptores Imunológicos , Viroses/genética , Viroses/metabolismo
13.
EMBO Rep ; 16(11): 1535-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341626

RESUMO

Mammalian Toll-like receptors (TLR) recognize microbial products and elicit transient immune responses that protect the infected host from disease. TLR4--which signals from both plasma and endosomal membranes--is activated by bacterial lipopolysaccharides (LPS) and induces many cytokine genes, the prolonged expression of which causes septic shock in mice. We report here that the expression of some TLR4-induced genes in myeloid cells requires the protein kinase activity of the epidermal growth factor receptor (EGFR). EGFR inhibition affects TLR4-induced responses differently depending on the target gene. The induction of interferon-ß (IFN-ß) and IFN-inducible genes is strongly inhibited, whereas TNF-α induction is enhanced. Inhibition is specific to the IFN-regulatory factor (IRF)-driven genes because EGFR is required for IRF activation downstream of TLR--as is IRF co-activator ß-catenin--through the PI3 kinase/AKT pathway. Administration of an EGFR inhibitor to mice protects them from LPS-induced septic shock and death by selectively blocking the IFN branch of TLR4 signaling. These results demonstrate a selective regulation of TLR4 signaling by EGFR and highlight the potential use of EGFR inhibitors to treat septic shock syndrome.


Assuntos
Receptores ErbB/metabolismo , Choque Séptico/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Gefitinibe , Fatores Reguladores de Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Lipopolissacarídeos/administração & dosagem , Camundongos , Análise em Microsséries , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Células RAW 264.7 , Choque Séptico/prevenção & controle , Choque Séptico/terapia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
FEBS J ; 282(24): 4766-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26414443

RESUMO

The murine double-stranded RNA-binding protein termed protein kinase R (PKR)-associated protein X (RAX) and the human homolog, protein activator of PKR (PACT), were originally characterized as activators of PKR. Mice deficient in RAX show reproductive and developmental defects, including reduced body size, craniofacial defects and anterior pituitary hypoplasia. As these defects are not observed in PKR-deficient mice, the phenotype has been attributed to PKR-independent activities of RAX. Here we further investigated the involvement of PKR in the physiological function of RAX, by generating rax(-/-) mice deficient in PKR, or carrying a kinase-inactive mutant of PKR (K271R) or an unphosphorylatable mutant of the PKR substrate eukaryotic translation initiation factor 2 α subunit (eIF2α) (S51A). Ablating PKR expression rescued the developmental and reproductive deficiencies in rax(-/-) mice. Generating rax(-/-) mice with a kinase-inactive mutant of PKR resulted in similar rescue, confirming that the rax(-/-) defects are PKR dependent; specifically that the kinase activity of PKR was required for these defects. Moreover, generating rax(-/-) mice that were heterozygous for an unphosphorylatable mutant eIF2α provides partial rescue of the rax(-/-) defect, consistent with mutation of one copy of the Eif2s1 gene. These observations were further investigated in vitro by reducing RAX expression in anterior pituitary cells, resulting in increased PKR activity and induction of the PKR-regulated cyclin-dependent kinase inhibitor p21(WAF1/CIP1). These results demonstrate that PKR kinase activity is required for onset of the rax(-/-) phenotype, implying an unexpected function for RAX as a negative regulator of PKR in the context of postnatal anterior pituitary tissue, and identify a critical role for the regulation of PKR activity for normal development.


Assuntos
Adeno-Hipófise/metabolismo , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/antagonistas & inibidores , Substituição de Aminoácidos , Animais , Ciclo Celular , Linhagem Celular , Proliferação de Células , Cruzamentos Genéticos , Ativação Enzimática , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Tamanho do Órgão , Fosforilação , Adeno-Hipófise/citologia , Adeno-Hipófise/enzimologia , Adeno-Hipófise/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Interferência de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
15.
PLoS Pathog ; 11(3): e1004779, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25811886

RESUMO

Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role.


Assuntos
Fator Regulador 3 de Interferon/imunologia , Transdução de Sinais/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Receptores Imunológicos , Transdução de Sinais/genética , Toxoplasmose/genética
16.
Nat Commun ; 5: 5811, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25503978

RESUMO

Epidermal growth factor receptor (EGFR) overexpression plays an important oncogenic role in cancer. Regular EGFR protein levels are increased in cancer cells and the receptor then becomes constitutively active. However, downstream signals generated by constitutively activated EGFR are unknown. Here we report that the overexpressed EGFR oscillates between two distinct and mutually exclusive modes of signalling. Constitutive or non-canonical EGFR signalling activates the transcription factor IRF3 leading to expression of IFI27, IFIT1 and TRAIL. Ligand-mediated activation of EGFR switches off IRF3-dependent transcription, activates canonical extracellular signal-regulated kinase (ERK) and Akt signals, and confers sensitivity to chemotherapy and virus-induced cell death. Mechanistically, the distinct downstream signals result from a switch of EGFR-associated proteins. EGFR constitutively complexes with IRF3 and TBK1 leading to TBK1 and IRF3 phosphorylation. Addition of epidermal growth factor dissociates TBK1, IRF3 and EGFR leading to a loss of IRF3 activity, Shc-EGFR association and ERK activation. Finally, we provide evidence for non-canonical EGFR signalling in glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
17.
J Virol ; 88(2): 1051-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198415

RESUMO

Type I interferons (IFN-α/ß) limit viral dissemination prior to the emergence of adaptive immune responses through the concerted action of interferon-stimulated genes (ISGs). Although IFN-α/ß induction by coronaviruses is modest, it effectively limits viral spread within the central nervous system (CNS) and protects against mortality. The protective roles of specific ISGs against the mouse hepatitis virus (MHV) members of the coronaviruses are largely unknown. This study demonstrates a protective role of the ISG Ifit2 in encephalitis induced by the dual hepato- and neurotropic MHV-A59. Contrasting the mild encephalitis and 100% survival of MHV-A59-infected wild-type (wt) mice, nearly 60% of infected Ifit2(-/-) mice exhibited severe encephalitis and succumbed between 6 and 8 days postinfection. Increased clinical disease in Ifit2(-/-) mice coincided with higher viral loads and enhanced viral spread throughout the CNS parenchyma. Ifit2(-/-) mice also expressed significantly reduced IFN-α/ß and downstream ISG mRNAs Ifit1, Isg15, and Pkr, while expression of proinflammatory cytokines and chemokines was only modestly affected in the CNS. Impaired IFN-α/ß induction in the absence of Ifit2 was confirmed by ex vivo mRNA analysis of microglia and macrophages, the prominent cell types producing IFN-α/ß following MHV CNS infection. Furthermore, both IFN-α/ß mRNA and protein production were significantly reduced in MHV-infected Ifit2(-/-) relative to wt bone marrow-derived macrophages. Collectively, the data implicate Ifit2 as a positive regulator of IFN-α/ß expression, rather than direct antiviral mediator, during MHV-induced encephalitis.


Assuntos
Sistema Nervoso Central/virologia , Encefalite/veterinária , Interferon-alfa/genética , Interferon beta/genética , Macrófagos/imunologia , Vírus da Hepatite Murina/fisiologia , Proteínas/imunologia , Doenças dos Roedores/imunologia , Animais , Proteínas Reguladoras de Apoptose , Sistema Nervoso Central/imunologia , Encefalite/genética , Encefalite/imunologia , Encefalite/virologia , Feminino , Interferon-alfa/imunologia , Interferon beta/imunologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Hepatite Murina/genética , Proteínas/genética , Proteínas de Ligação a RNA , Doenças dos Roedores/genética , Doenças dos Roedores/virologia , Tropismo Viral
18.
PLoS Pathog ; 9(8): e1003557, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990781

RESUMO

PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR(-/-) mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Transdução de Sinais , Toxoplasma/metabolismo , Toxoplasmose/enzimologia , eIF-2 Quinase/metabolismo , Animais , Autofagia/genética , Antígenos CD40/genética , Antígenos CD40/metabolismo , Citocinas/genética , Citocinas/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Microglia/patologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/patologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , eIF-2 Quinase/genética
19.
Cell Res ; 23(8): 1025-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23877405

RESUMO

The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named "NS-degradasome" (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity.


Assuntos
Imunidade Inata , Mitocôndrias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Hepacivirus/metabolismo , Humanos , Interferon Tipo I/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Nocodazol/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Especificidade por Substrato , Proteínas não Estruturais Virais/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(1): E89-98, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23236145

RESUMO

Large parts of mammalian genomes are transcriptionally inactive and enriched with various classes of interspersed and tandem repeats. Here we show that the tumor suppressor protein p53 cooperates with DNA methylation to maintain silencing of a large portion of the mouse genome. Massive transcription of major classes of short, interspersed nuclear elements (SINEs) B1 and B2, both strands of near-centromeric satellite DNAs consisting of tandem repeats, and multiple species of noncoding RNAs was observed in p53-deficient but not in p53 wild-type mouse fibroblasts treated with the DNA demethylating agent 5-aza-2'-deoxycytidine. The abundance of these transcripts exceeded the level of ß-actin mRNA by more than 150-fold. Accumulation of these transcripts, which are capable of forming double-stranded RNA (dsRNA), was accompanied by a strong, endogenous, apoptosis-inducing type I IFN response. This phenomenon, which we named "TRAIN" (for "transcription of repeats activates interferon"), was observed in spontaneous tumors in two models of cancer-prone mice, presumably reflecting naturally occurring DNA hypomethylation and p53 inactivation in cancer. These observations suggest that p53 and IFN cooperate to prevent accumulation of cells with activated repeats and provide a plausible explanation for the deregulation of IFN function frequently seen in tumors. Overall, this work reveals roles for p53 and IFN that are key for genetic stability and therefore relevant to both tumorigenesis and the evolution of species.


Assuntos
Metilação de DNA , Repressão Epigenética/fisiologia , Interferon Tipo I/metabolismo , RNA não Traduzido/genética , Sequências Repetitivas de Ácido Nucleico/genética , Proteína Supressora de Tumor p53/genética , Actinas/genética , Animais , Azacitidina/análogos & derivados , Biologia Computacional , Decitabina , Repressão Epigenética/genética , Camundongos , Análise em Microsséries , Análise de Sequência de RNA , Proteína Supressora de Tumor p53/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA