Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155662

RESUMO

Algal extracts are sources of bioactive substances with applications in the development of novel alternative drugs against several diseases, including trichomoniasis sexually transmitted infection caused by Trichomonas vaginalis. Factors such as clinical failures and resistant strains limit the success of the existing drugs available for treating this disease. Therefore, searching for viable alternatives to these drugs is essential for the treatment of this disease. The present study was conducted for, in vitro and in silico characterization of extracts obtained from marine macroalgae Gigartina skottsbergii at stages gametophidic, cystocarpic, and tetrasporophidic. In addition, antiparasitic activity of these extracts against the ATCC 30236 isolate of T. vaginalis, their cytotoxicity, and gene expression of trophozoites after treatment were evaluated. The minimum inhibitory concentration and 50% inhibition concentration were determined for each extract. Results: In vitro analysis of the extracts' anti-T. vaginalis activity revealed an inhibitory effect of 100%, 89.61%, and 86.95% for Gigartina skottsbergii at stages gametophidic, cystocarpic, and tetrasporophidic, respectively, at 100 µg/mL. In silico analysis revealed the interactions between constituents of the extracts and enzymes from T. vaginalis, with significant free energy values obtained for the binding. None of the extract concentrations exhibited cytotoxic effects on VERO cell line compared to control, while cytotoxicity on HMVII vaginal epithelial cells line was observed at 100 µg/mL (30% inhibition). Gene expression analysis revealed differences in the expression profile of T. vaginalis enzymes between the extract-treated and control groups. According to these results, Gigartina skottsbergii extracts exhibited satisfactory antiparasitic activity.


Assuntos
Anti-Infecciosos , Rodófitas , Alga Marinha , Tricomoníase , Trichomonas vaginalis , Feminino , Humanos , Antiparasitários/farmacologia , Anti-Infecciosos/farmacologia , Lipídeos/farmacologia
2.
Exp Parasitol ; 200: 37-41, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30928354

RESUMO

Toxocara spp. are responsible for causing toxocariasis, a zoonotic disease of global importance, which is difficult to treat as the available drugs have moderate efficacy in the clinical resolution of the disease. A promising alternative to the existing drugs is Propolis, which is known for having biological and pharmacological properties such as antiparasitic, antioxidant, and antitumor activities. In this study, we report the in vitro anthelmintic activity of essential oil from Brazilian Red Propolis (EOP) against larvae of Toxocara cati. Approximately 100 larvae per well were cultivated in microplates containing RPMI-1640 medium and incubated in the presence of EOP (18.75, 37.5, 75, 150, 300 and 600 µg/mL) to determine the Minimum Inhibitory Concentration (MIC) and IC50 (concentration required to inhibit 50% of the population) values. Then, T. cati larvae treated with the MIC of EOP were inoculated in mice to evaluate their progression in vivo. A concentration of 600 µg/mL of EOP showed 100% larvicidal activity after exposure for 48 h, while 300 µg/mL represented the IC50 and CC50. The anthelmintic activity of EOP was confirmed by the inability of the treated T. cati larvae to infect the mice. Our findings demonstrate the potential of EOP as an anthelmintic.


Assuntos
Anti-Helmínticos/farmacologia , Óleos Voláteis/farmacologia , Própole/química , Toxocara/efeitos dos fármacos , Animais , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/toxicidade , Células CHO , Corantes , Cricetinae , Cricetulus , Feminino , Concentração Inibidora 50 , Cinética , Larva/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Movimento/efeitos dos fármacos , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/toxicidade , Toxocara/fisiologia , Azul Tripano
3.
PLoS One ; 13(2): e0191797, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29390009

RESUMO

Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 µg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 µg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 µg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-ß-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 µg/mL of EOP. An EOP concentration of 500 µg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 µg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 µg/mL, and 92% cytotoxicity was observed after exposure to 500 µg/mL of EOP. Otherwise, a concentration of 200 µg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is constituted by biologically active components with promising antiparasitic and immunostimulatory activities and can be investigated for the formulation of new vaccines or trichomonacidal drugs.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antiparasitários/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Própole/química , Animais , Formação de Anticorpos , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Camundongos Endogâmicos BALB C , Trichomonas vaginalis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA