Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 22(9-10): 707-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27036931

RESUMO

Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFß) signaling as a potential pathway for pharmacological modulation in vivo. We demonstrate that inhibition of TGFß signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFß signaling by producing higher levels of BMP2 that upregulates inhibitory Smad6 expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.


Assuntos
Benzamidas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Dioxóis/farmacologia , Osteoblastos , Transdução de Sinais/efeitos dos fármacos , Crânio , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Proteína Morfogenética Óssea 2/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Crânio/lesões , Crânio/metabolismo , Crânio/patologia , Proteína Smad6/biossíntese , Fator de Crescimento Transformador beta/metabolismo
2.
Tissue Eng Part A ; 22(1-2): 31-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26486617

RESUMO

Cell-based therapy is an emerging paradigm in skeletal regenerative medicine. However, the primary means by which transplanted cells contribute to bone repair and regeneration remain controversial. To gain an insight into the mechanisms of how both transplanted and endogenous cells mediate skeletal healing, we used a transgenic mouse strain expressing both the topaz variant of green fluorescent protein under the control of the collagen, type I, alpha 1 promoter/enhancer sequence (Col1a1(GFP)) and membrane-bound tomato red fluorescent protein constitutively in all cell types (R26(mTmG)). A comparison of healing in parietal versus frontal calvarial defects in these mice revealed that frontal osteoblasts express Col1a1 to a greater degree than parietal osteoblasts. Furthermore, the scaffold-based application of adipose-derived stromal cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), and osteoblasts derived from these mice to critical-sized calvarial defects allowed for investigation of cell survival and function following transplantation. We found that ASCs led to significantly faster rates of bone healing in comparison to BM-MSCs and osteoblasts. ASCs displayed both increased survival and increased Col1a1 expression compared to BM-MSCs and osteoblasts following calvarial defect transplantation, which may explain their superior regenerative capacity in the context of bone healing. Using this novel reporter system, we were able to elucidate how cell-based therapies impact bone healing and identify ASCs as an attractive candidate for cell-based skeletal regenerative therapy. These insights potentially influence stem cell selection in translational clinical trials evaluating cell-based therapeutics for osseous repair and regeneration.


Assuntos
Tecido Adiposo/metabolismo , Colágeno Tipo I/biossíntese , Regulação da Expressão Gênica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Crânio , Aloenxertos , Animais , Sobrevivência Celular , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Camundongos , Camundongos Transgênicos , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
3.
J Vis Exp ; (95): 52181, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25650785

RESUMO

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are considered the gold standard for stem cell-based tissue engineering applications. However, the process by which they must be harvested can be associated with significant donor site morbidity. In contrast, adipose-derived stromal cells (ASCs) are more readily abundant and more easily harvested, making them an appealing alternative to BM-MSCs. Like BM-MSCs, ASCs can differentiate into osteogenic lineage cells and can be used in tissue engineering applications, such as seeding onto scaffolds for use in craniofacial skeletal defects. ASCs are obtained from the stromal vascular fraction (SVF) of digested adipose tissue, which is a heterogeneous mixture of ASCs, vascular endothelial and mural cells, smooth muscle cells, pericytes, fibroblasts, and circulating cells. Flow cytometric analysis has shown that the surface marker profile for ASCs is similar to that for BM-MSCs. Despite several published reports establishing markers for the ASC phenotype, there is still a lack of consensus over profiles identifying osteoprogenitor cells in this heterogeneous population. This protocol describes how to isolate and use a subpopulation of ASCs with enhanced osteogenic capacity to repair critical-sized calvarial defects.


Assuntos
Tecido Adiposo/citologia , Citometria de Fluxo/métodos , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Adipócitos/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Linhagem da Célula , Feminino , Humanos , Fenótipo
4.
Plast Reconstr Surg ; 135(3): 907-917, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25719706

RESUMO

Over 100 million patients acquire scars in the industrialized world each year, primarily as a result of elective operations. Although undefined, the global incidence of scarring is even larger, extending to significant numbers of burn and other trauma-related wounds. Scars have the potential to exert a profound psychological and physical impact on the individual. Beyond aesthetic considerations and potential disfigurement, scarring can result in restriction of movement and reduced quality of life. The formation of a scar following skin injury is a consequence of wound healing occurring through reparative rather than regenerative mechanisms. In this article, the authors review the basic stages of wound healing; differences between adult and fetal wound healing; various mechanical, genetic, and pharmacologic strategies to reduce scarring; and the biology of skin stem/progenitor cells that may hold the key to scarless regeneration.


Assuntos
Cicatriz/fisiopatologia , Regeneração/fisiologia , Fenômenos Fisiológicos da Pele , Pele/fisiopatologia , Cicatrização/fisiologia , Humanos
5.
Cell ; 160(1-2): 285-98, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594184

RESUMO

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.


Assuntos
Osso e Ossos/citologia , Células-Tronco Mesenquimais/citologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem/citologia , Linhagem da Célula , Cruzamentos Genéticos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
6.
Blood ; 125(2): 249-60, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25406351

RESUMO

In the last decade there has been a rapid expansion in clinical trials using mesenchymal stromal cells (MSCs) from a variety of tissues. However, despite similarities in morphology, immunophenotype, and differentiation behavior in vitro, MSCs sourced from distinct tissues do not necessarily have equivalent biological properties. We performed a genome-wide methylation, transcription, and in vivo evaluation of MSCs from human bone marrow (BM), white adipose tissue, umbilical cord, and skin cultured in humanized media. Surprisingly, only BM-derived MSCs spontaneously formed a BM cavity through a vascularized cartilage intermediate in vivo that was progressively replaced by hematopoietic tissue and bone. Only BM-derived MSCs exhibited a chondrogenic transcriptional program with hypomethylation and increased expression of RUNX3, RUNX2, BGLAP, MMP13, and ITGA10 consistent with a latent and primed skeletal developmental potential. The humanized MSC-derived microenvironment permitted homing and maintenance of long-term murine SLAM(+) hematopoietic stem cells (HSCs), as well as human CD34(+)/CD38(-)/CD90(+)/CD45RA(+) HSCs after cord blood transplantation. These studies underscore the profound differences in developmental potential between MSC sources independent of donor age, with implications for their clinical use. We also demonstrate a tractable human niche model for studying homing and engraftment of human hematopoietic cells in normal and neoplastic states.


Assuntos
Linhagem da Célula , Epigênese Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco , Western Blotting , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Citometria de Fluxo , Humanos , Osteogênese/fisiologia
7.
J Vis Exp ; (93): e52056, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25407120

RESUMO

Osteoclasts are highly specialized cells that are derived from the monocyte/macrophage lineage of the bone marrow. Their unique ability to resorb both the organic and inorganic matrices of bone means that they play a key role in regulating skeletal remodeling. Together, osteoblasts and osteoclasts are responsible for the dynamic coupling process that involves both bone resorption and bone formation acting together to maintain the normal skeleton during health and disease. As the principal bone-resorbing cell in the body, changes in osteoclast differentiation or function can result in profound effects in the body. Diseases associated with altered osteoclast function can range in severity from lethal neonatal disease due to failure to form a marrow space for hematopoiesis, to more commonly observed pathologies such as osteoporosis, in which excessive osteoclastic bone resorption predisposes to fracture formation. An ability to isolate osteoclasts in high numbers in vitro has allowed for significant advances in the understanding of the bone remodeling cycle and has paved the way for the discovery of novel therapeutic strategies that combat these diseases. Here, we describe a protocol to isolate and cultivate osteoclasts from mouse bone marrow that will yield large numbers of osteoclasts.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Osteoclastos/citologia , Animais , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Regen Med ; 9(6): 817-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431917

RESUMO

Wounds, both chronic and acute, continue to be a tremendous socioeconomic burden. As such, technologies drawn from many disciplines within science and engineering are constantly being incorporated into innovative wound healing therapies. While many of these therapies are experimental, they have resulted in new insights into the pathophysiology of wound healing, and in turn the development of more specialized treatments for both normal and abnormal wound healing states. Herein, we review some of the emerging technologies that are currently being developed to aid and improve wound healing after cutaneous injury.


Assuntos
Pele/citologia , Pele/patologia , Células-Tronco/citologia , Cicatrização , Animais , Humanos , Pele/lesões , Transplante de Células-Tronco , Engenharia Tecidual
9.
Plast Reconstr Surg ; 134(1): 39-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25028817

RESUMO

BACKGROUND: Although fat grafting can address many soft-tissue deficits, results remain inconsistent. In this study, the authors compared physical properties of fat following injection using an automated, low-shear device or the modified Coleman technique. METHODS: Lipoaspirate was obtained from nine patients and processed for injection using either a modified Coleman technique or an automated, low-shear device. Fat was passed through a 2-mm cannula and compared with minimally processed fat. A rheometer was used to measure the storage modulus and shear rate at which tissues began to lose their solid-like properties. Viscosity was also measured, and gross properties of treatment groups were evaluated qualitatively with a glass slide test. RESULTS: Fat injected through an automated, low-shear device closely matched physical properties of minimally processed fat. The storage modulus (G') of fat for the device group was greater than for the modified Coleman group, and the onset of breakdown was delayed. Similarly, viscosity measurement of fat from the automated device closely matched minimally processed fat and was greater than that of othe modified Coleman group. CONCLUSIONS: The physical properties of lipoaspirate processed using an automated, low-shear device with a 2-mm cannula preserved the intactness of fat more than the modified Coleman technique. The authors' rheologic data demonstrate less damage using an automated device compared with the modified Coleman technique and potentially support its use for improved fat graft integrity.


Assuntos
Tecido Adiposo/transplante , Injeções/métodos , Fenômenos Biomecânicos , Humanos , Injeções/instrumentação
10.
Plast Reconstr Surg ; 134(2): 193-200, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24732654

RESUMO

BACKGROUND: Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. METHODS: The authors review the potential and the drawbacks of incorporation of stem cells in cosmetic procedures. A review of U.S. Food and Drug Administration-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of Web sites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed. RESULTS: Despite the protective net cast by regulatory agencies such as the U.S. Food and Drug Administration and professional societies such as the American Society of Plastic Surgeons, the authors are witnessing worrying advertisements for procedures such as stem cell face lifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. CONCLUSIONS: Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that they provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.


Assuntos
Técnicas Cosméticas , Transplante de Células-Tronco , Técnicas Cosméticas/economia , Medicina Baseada em Evidências , Humanos , Marketing , Avaliação de Resultados em Cuidados de Saúde , Rejuvenescimento , Transplante de Células-Tronco/economia , Transplante de Células-Tronco/legislação & jurisprudência , Estados Unidos , United States Food and Drug Administration
11.
Plast Reconstr Surg ; 134(1): 29-38, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24622574

RESUMO

BACKGROUND: Fat grafting has become increasingly popular for the correction of soft-tissue deficits at many sites throughout the body. Long-term outcomes, however, depend on delivery of fat in the least traumatic fashion to optimize viability of the transplanted tissue. In this study, the authors compare the biological properties of fat following injection using two methods. METHODS: Lipoaspiration samples were obtained from five female donors, and cellular viability, proliferation, and lipolysis were evaluated following injection using either a modified Coleman technique or an automated, low-shear device. Comparisons were made to minimally processed, uninjected fat. Volume retention was also measured over 12 weeks after injection of fat under the scalp of immunodeficient mice using either the modified Coleman technique or the Adipose Tissue Injector. Finally, fat grafts were analyzed histologically. RESULTS: Fat viability and cellular proliferation were both significantly greater with the Adipose Tissue Injector relative to injection with the modified Coleman technique. In contrast, significantly less lipolysis was noted using the automated device. In vivo fat volume retention was significantly greater than with the modified Coleman technique at the 4-, 6-, 8-, and 12-week time points. This corresponded to significantly greater histologic scores for healthy fat and lower scores for injury following injection with the device. CONCLUSION: Biological properties of injected tissues reflect how disruptive and harmful techniques for placement of fat may be, and the authors' in vitro and in vivo data both support the use of the automated, low-shear devices compared with the modified Coleman technique.


Assuntos
Tecido Adiposo/transplante , Sobrevivência de Enxerto , Adulto , Animais , Desenho de Equipamento , Feminino , Humanos , Injeções/instrumentação , Injeções/métodos , Masculino , Camundongos , Pessoa de Meia-Idade
12.
Curr Stem Cell Res Ther ; 9(2): 73-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24359141

RESUMO

In 2006, Dr. Yamanaka created the induced pluripotent stem cell (iPSC) by reprogramming adult fibroblasts back to an immature, pluripotent state. Effectively bypassing the ethical constraints of human embryonic stem cells, iPSCs have expanded the horizons of regenerative medicine by offering a means to derive autologous patient-matched cells and tissues for clinical transplantation. However, persisting safety concerns must be addressed prior to their widespread clinical application. In this review, we discuss the history of iPSCs, derivation strategies, and current research involving gene therapy and disease modeling. We review the potential of iPSCs for improving a range of cell-based therapies and obstacles to their clinical implementation.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Técnicas de Cultura de Células , Terapia Genética , Vetores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Modelos Biológicos , Regeneração , Medicina Regenerativa , Engenharia Tecidual
18.
Stem Cells Transl Med ; 2(10): 808-17, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24018794

RESUMO

Harvesting adipose-derived stromal cells (ASCs) for tissue engineering is frequently done through liposuction. However, several different techniques exist. Although third-generation ultrasound-assisted liposuction has been shown to not have a negative effect on ASCs, the impact of laser-assisted liposuction on the quality and differentiation potential of ASCs has not been studied. Therefore, ASCs were harvested from laser-assisted lipoaspirate and suction-assisted lipoaspirate. Next, in vitro parameters of cell yield, cell viability and proliferation, surface marker phenotype, osteogenic differentiation, and adipogenic differentiation were performed. Finally, in vivo bone formation was assessed using a critical-sized cranial defect in athymic nude mice. Although ASCs isolated from suction-assisted lipoaspirate and laser-assisted lipoaspirate both successfully underwent osteogenic and adipogenic differentiation, the cell yield, viability, proliferation, and frequency of ASCs (CD34(+)CD31(-)CD45(-)) in the stromal vascular fraction were all significantly less with laser-assisted liposuction in vitro (p < .05). In vivo, quantification of osseous healing by micro-computed tomography revealed significantly more healing with ASCs isolated from suction-assisted lipoaspirate relative to laser-assisted lipoaspirate at the 4-, 6-, and 8-week time points (p < .05). Therefore, as laser-assisted liposuction appears to negatively impact the biology of ASCs, cell harvest using suction-assisted liposuction is preferable for tissue-engineering purposes.


Assuntos
Tecido Adiposo/citologia , Lipectomia/métodos , Medicina Regenerativa/métodos , Células Estromais/citologia , Engenharia Tecidual/métodos , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Citometria de Fluxo , Humanos , Lasers , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA