Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37372124

RESUMO

Fifty percent of all patients with cancer worldwide require radiotherapy. In the case of brain tumors, despite the improvement in the precision of radiation delivery with proton therapy, studies have shown structural and functional changes in the brains of treated patients with protons. The molecular pathways involved in generating these effects are not completely understood. In this context, we analyzed the impact of proton exposure in the central nervous system area of Caenorhabditis elegans with a focus on mitochondrial function, which is potentially implicated in the occurrence of radiation-induced damage. To achieve this objective, the nematode C. elegans were micro-irradiated with 220 Gy of protons (4 MeV) in the nerve ring (head region) using the proton microbeam, MIRCOM. Our results show that protons induce mitochondrial dysfunction, characterized by an immediate dose-dependent loss of the mitochondrial membrane potential (ΔΨm) associated with oxidative stress 24 h after irradiation, which is itself characterized by the induction of the antioxidant proteins in the targeted region, observed using SOD-1::GFP and SOD-3::GFP strains. Moreover, we demonstrated a two-fold increase in the mtDNA copy number in the targeted region 24 h after irradiation. In addition, using the GFP::LGG-1 strain, an induction of autophagy in the irradiated region was observed 6 h following the irradiation, which is associated with the up-regulation of the gene expression of pink-1 (PTEN-induced kinase) and pdr-1 (C. elegans parkin homolog). Furthermore, our data showed that micro-irradiation of the nerve ring region did not impact the whole-body oxygen consumption 24 h following the irradiation. These results indicate a global mitochondrial dysfunction in the irradiated region following proton exposure. This provides a better understanding of the molecular pathways involved in radiation-induced side effects and may help in finding new therapies.

2.
Aging (Albany NY) ; 14(21): 8661-8687, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36367773

RESUMO

There is accumulating evidence that interfering with the basic aging mechanisms can enhance healthy longevity. The interventional/therapeutic strategies targeting multiple aging hallmarks could be more effective than targeting one hallmark. While health-promoting qualities of marine oils have been extensively studied, the underlying molecular mechanisms are not fully understood. Lipid extracts from Antarctic krill are rich in long-chain omega-3 fatty acids choline, and astaxanthin. Here, we used C. elegans and human cells to investigate whether krill oil promotes healthy aging. In a C. elegans model of Parkinson´s disease, we show that krill oil protects dopaminergic neurons from aging-related degeneration, decreases alpha-synuclein aggregation, and improves dopamine-dependent behavior and cognition. Krill oil rewires distinct gene expression programs that contribute to attenuating several aging hallmarks, including oxidative stress, proteotoxic stress, senescence, genomic instability, and mitochondrial dysfunction. Mechanistically, krill oil increases neuronal resilience through temporal transcriptome rewiring to promote anti-oxidative stress and anti-inflammation via healthspan regulating transcription factors such as SNK-1. Moreover, krill oil promotes dopaminergic neuron survival through regulation of synaptic transmission and neuronal functions via PBO-2 and RIM-1. Collectively, krill oil rewires global gene expression programs and promotes healthy aging via abrogating multiple aging hallmarks, suggesting directions for further pre-clinical and clinical explorations.


Assuntos
Neurônios Dopaminérgicos , Euphausiacea , Humanos , Animais , Transcriptoma , Caenorhabditis elegans , Óleos de Plantas , Dopamina
3.
DNA Repair (Amst) ; 61: 46-55, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29202295

RESUMO

Oxidation of DNA bases, an inevitable consequence of oxidative stress, requires the base excision repair (BER) pathway for repair. Caenorhabditis elegans is a well-established model to study phenotypic consequences and cellular responses to oxidative stress. To better understand how BER affects phenotypes associated with oxidative stress, we characterised the C. elegans nth-1 mutant, which lack the only DNA glycosylase dedicated to repair of oxidative DNA base damage, the NTH-1 DNA glycosylase. We show that nth-1 mutants have mitochondrial dysfunction characterised by lower mitochondrial DNA copy number, reduced mitochondrial membrane potential, and increased steady-state levels of reactive oxygen species. Consistently, nth-1 mutants express markers of chronic oxidative stress with high basal phosphorylation of MAP-kinases (MAPK) but further activation of MAPK in response to the superoxide generator paraquat is attenuated. Surprisingly, nth-1 mutants also failed to induce apoptosis in response to paraquat. The ability to induce apoptosis in response to paraquat was regained when basal MAPK activation was restored to wild type levels. In conclusion, the failure of nth-1 mutants to induce apoptosis in response to paraquat is not a direct effect of the DNA repair deficiency but an indirect consequence of the compensatory cellular stress response that includes MAPK activation.


Assuntos
Apoptose/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , DNA Glicosilases/deficiência , Endonucleases/deficiência , Células Germinativas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Caenorhabditis elegans , Respiração Celular , DNA Mitocondrial , Dosagem de Genes , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Rep ; 7(1): 7199, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775312

RESUMO

Both a DNA lesion and an intermediate for antibody maturation, uracil is primarily processed by base excision repair (BER), either initiated by uracil-DNA glycosylase (UNG) or by single-strand selective monofunctional uracil DNA glycosylase (SMUG1). The relative in vivo contributions of each glycosylase remain elusive. To assess the impact of SMUG1 deficiency, we measured uracil and 5-hydroxymethyluracil, another SMUG1 substrate, in Smug1 -/- mice. We found that 5-hydroxymethyluracil accumulated in Smug1 -/- tissues and correlated with 5-hydroxymethylcytosine levels. The highest increase was found in brain, which contained about 26-fold higher genomic 5-hydroxymethyluracil levels than the wild type. Smug1 -/- mice did not accumulate uracil in their genome and Ung -/- mice showed slightly elevated uracil levels. Contrastingly, Ung -/- Smug1 -/- mice showed a synergistic increase in uracil levels with up to 25-fold higher uracil levels than wild type. Whole genome sequencing of UNG/SMUG1-deficient tumours revealed that combined UNG and SMUG1 deficiency leads to the accumulation of mutations, primarily C to T transitions within CpG sequences. This unexpected sequence bias suggests that CpG dinucleotides are intrinsically more mutation prone. In conclusion, we showed that SMUG1 efficiently prevent genomic uracil accumulation, even in the presence of UNG, and identified mutational signatures associated with combined UNG and SMUG1 deficiency.


Assuntos
Citosina/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Uracila-DNA Glicosidase/deficiência , Uracila/metabolismo , Animais , Ilhas de CpG , Desaminação , Genoma , Genômica/métodos , Camundongos , Camundongos Knockout , Mutação
5.
Cell ; 157(4): 882-896, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813611

RESUMO

Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD(+)-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition or by supplementation with NAD(+) precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a nuclear-mitochondrial crosstalk that is critical for the maintenance of mitochondrial health.


Assuntos
Mitofagia , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuína 1/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Xeroderma Pigmentoso/fisiopatologia , Envelhecimento , Animais , Apoptose , Autofagia , Caenorhabditis elegans , Linhagem Celular , Humanos , Canais Iônicos/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Quinases/metabolismo , Ratos , Proteína Desacopladora 2 , Xeroderma Pigmentoso/metabolismo
6.
Nat Commun ; 4: 2674, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24154628

RESUMO

Cellular responses to DNA damage involve distinct DNA repair pathways, such as mismatch repair (MMR) and base excision repair (BER). Using Caenorhabditis elegans as a model system, we present genetic and molecular evidence of a mechanistic link between processing of DNA damage and activation of autophagy. Here we show that the BER AP endonucleases APN-1 and EXO-3 function in the same pathway as MMR, to elicit DNA-directed toxicity in response to 5-fluorouracil, a mainstay of systemic adjuvant treatment of solid cancers. Immunohistochemical analyses suggest that EXO-3 generates the DNA nicks required for MMR activation. Processing of DNA damage via this pathway, in which both BER and MMR enzymes are required, leads to induction of autophagy in C. elegans and human cells. Hence, our data show that MMR- and AP endonuclease-dependent processing of 5-fluorouracil-induced DNA damage leads to checkpoint activation and induction of autophagy, whose hyperactivation contributes to cell death.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endodesoxirribonucleases/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endodesoxirribonucleases/metabolismo , Fluoruracila/farmacologia , Regulação da Expressão Gênica , Humanos , Transdução de Sinais
7.
PLoS One ; 7(11): e48992, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23155442

RESUMO

The mechanisms of successful epigenetic reprogramming in cancer are not well characterized as they involve coordinated removal of repressive marks and deposition of activating marks by a large number of histone and DNA modification enzymes. Here, we have used a cross-species functional genomic approach to identify conserved genetic interactions to improve therapeutic effect of the histone deacetylase inhibitor (HDACi) valproic acid, which increases survival in more than 20% of patients with advanced acute myeloid leukemia (AML). Using a bidirectional synthetic lethality screen revealing genes that increased or decreased VPA sensitivity in C. elegans, we identified novel conserved sensitizers and synthetic lethal interactors of VPA. One sensitizer identified as a conserved determinant of therapeutic success of HDACi was UTX (KDM6A), which demonstrates a functional relationship between protein acetylation and lysine-specific methylation. The synthetic lethal screen identified resistance programs that compensated for the HDACi-induced global hyper-acetylation, and confirmed MAPKAPK2, HSP90AA1, HSP90AB1 and ACTB as conserved hubs in a resistance program for HDACi that are drugable in human AML cell lines. Hence, these resistance hubs represent promising novel targets for refinement of combinatorial epigenetic anti-cancer therapy.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Ácido Valproico/uso terapêutico , Animais , Caenorhabditis elegans , Epigênese Genética , Histona Desacetilases/genética , Humanos , Ratos
8.
J Cell Sci ; 124(Pt 9): 1510-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21502138

RESUMO

Autophagy is a lysosome-mediated self-degradation process of eukaryotic cells that, depending on the cellular milieu, can either promote survival or act as an alternative mechanism of programmed cell death (PCD) in terminally differentiated cells. Despite the important developmental and medical implications of autophagy and the main form of PCD, apoptosis, orchestration of their regulation remains poorly understood. Here, we show in the nematode Caenorhabditis elegans, that various genetic and pharmacological interventions causing embryonic lethality trigger a massive cell death response that has both autophagic and apoptotic features. The two degradation processes are also redundantly required for normal development and viability in this organism. Furthermore, the CES-2-like basic region leucine-zipper (bZip) transcription factor ATF-2, an upstream modulator of the core apoptotic cell death pathway, is able to directly regulate the expression of at least two key autophagy-related genes, bec-1/ATG6 and lgg-1/ATG8. Thus, the two cell death mechanisms share a common method of transcriptional regulation. Together, these results imply that under certain physiological and pathological conditions, autophagy and apoptosis are co-regulated to ensure the proper morphogenesis and survival of the developing organism. The identification of apoptosis and autophagy as compensatory cellular pathways in C. elegans might help us to understand how dysregulated PCD in humans can lead to diverse pathologies, including cancer, neurodegeneration and diabetes.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animais , Apoptose/genética , Autofagia/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Marcação In Situ das Extremidades Cortadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
DNA Repair (Amst) ; 10(2): 176-87, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21111690

RESUMO

MutT enzymes prevent DNA damage by hydrolysis of 8-oxodGTP, an oxidized substrate for DNA synthesis and antimutagenic, anticarcinogenic, and antineurodegenerative functions of MutT enzymes are well established. MutT has been found in almost all kingdoms of life, including many bacterial species, yeasts, plants and mammals. However, a Caenorhabditis elegans MutT homologue was not previously identified. Here, we demonstrate that NDX-4 exhibits both hallmarks of a MutT-type enzyme with an ability to hydrolyze 8-oxodGTP and suppress the Escherichia coli mutT mutator phenotype. Moreover, we show that NDX-4 contributes to genomic stability in vivo in C. elegans. Phenotypic analyses of an ndx-4 mutant reveal that loss of NDX-4 leads to upregulation of key stress responsive genes that likely compensate for the in vivo role of NDX-4 in protection against deleterious consequences of oxidative stress. This discovery will enable us to use this extremely robust genetic model for further research into the contribution of oxidative DNA damage to phenotypes associated with oxidative stress.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Reparo do DNA , Instabilidade Genômica , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA , Nucleotídeos de Desoxiguanina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Mutação , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Monoéster Fosfórico Hidrolases/genética , Pirofosfatases/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA