Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365581

RESUMO

Conventional thermosetting composites exhibit advantageous mechanical properties owing to the use of an autoclave; however, their wide usage is limited by high production costs and long molding times. In contrast, the fabrication of thermoplastic composites involves out-of-autoclave processes that use press equipment. In particular, induction-heating molding facilitates a quicker thermal cycle, reduced processing time, and improved durability of the thermoplastic polymers; thus, the process cost and production time can be reduced. In this study, carbon fiber/polyphenylene sulfide thermoplastic composites were manufactured using induction-heating molding, and the relationships among the process, structure, and mechanical properties were investigated. The composites were characterized using optical and scanning electron microscopy, an ultrasonic C-scan, and X-ray computed tomography. In addition, the composites were subjected to flammability tests. This study provides novel insights into the optimization of thermoplastic composite manufacturing and thermoset composite curing processes.

3.
J Nanosci Nanotechnol ; 18(9): 6220-6227, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677770

RESUMO

In this study, we investigated the effect of the silane coupling agent on the relationship between the surface free energy of carbon fibers (CFs) and the mechanical strength of CFs/acrylonitrile butadiene rubber (NBR) composites. Moreover, the creep behavior of the CF/NBR composites at surface energetic point of view were studied. The specific component of the surface free energy of the carbon fibers was found to increase upon grafting of the silane coupling agent, resulting in an increase in the tensile strength of the CF/NBR composites. On the other hand, the compressive creep strength was found to follow a slightly different trend. These results indicate the possible formation of a complex interpenetrating polymer network depending on the molecular size of the organic functional groups of the silane coupling agent.

4.
J Nanosci Nanotechnol ; 14(12): 9097-102, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971017

RESUMO

In this work, oxyfluorination treatments on carbon fiber surfaces were carried out to improve the interfacial adhesion between carbon fibers and polarized-polypropylene (P-PP). The surface properties of oxyfluorinated carbon fibers were characterized using a single fiber contact angle, and X-ray photoelectron spectroscopy. The mechanical properties of the composites were calculated in terms of work of adhesion between fibers and matrices and also measured by a critical stress intensity factor (K(IC)). The K(IC) of oxyfluorinated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites. The results showed that the adhesion strength between the carbon fibers and P-PP had significantly increased after the oxyfluorination treatments. As the theoretical and practical comparisons, OF-CF-60s showed the best mechanical interfacial performance due to the good surface free energy. This indicates that oxyfluorination produced highly polar functional groups on the fiber surface, resulting in strong adhesion between carbon fibers and P-PP in this composite system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA