RESUMO
This study introduces numerous low-cost gas sensors and a real-time alcoholic beverage classification system based on machine learning. Dogs possess a superior sense of smell compared to humans due to having 30 times more olfactory receptors and three times more olfactory receptor types than humans. Thus, in odor classification, the number of olfactory receptors is a more influential factor than the number of receptor types. From this perspective, this study proposes a system that utilizes distinctive data patterns resulting from heterogeneous responses among numerous low-cost homogeneous MOS-based sensors with poor gas selectivity. To evaluate the performance of the proposed system, learning data were gathered using three alcoholic beverage groups including different aged whiskeys, Korean soju with 99% same compositions, and white wines made from the Sauvignon blanc variety, sourced from various countries. The electronic nose system was developed to classify alcoholic samples measured using 30 gas sensors in real time. The samples were injected into a gas chamber for 60 seconds, followed by a 60-second injection of clean air. After preprocessing the time-series data into four distinct datasets, the data were analyzed using a machine learning algorithm, and the classification results were compared. The results showed a high classification accuracy of over 99%, and it was observed that classification performance varied depending on data preprocessing. As the number of gas sensors increased, the prediction accuracy improved, reaching up to 99.83 ± 0.21%. These experimental results indicated that the proposed electronic nose system's classification performance was comparable to that of commercial electronic nose systems. Additionally, the implementation of an alcoholic beverage classification system based on a pretrained LDA model demonstrated the feasibility of real-time classification using the proposed system.
Assuntos
Bebidas Alcoólicas , Nariz Eletrônico , Aprendizado de Máquina , Bebidas Alcoólicas/análise , Animais , Odorantes/análise , Cães , Gases/análise , Gases/química , HumanosRESUMO
Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones, leading to the silencing of genes. Targeting specific isoforms of HDACs has emerged as a promising approach for cancer therapy, as it can overcome drawbacks associated with pan-HDAC inhibitors. HDAC6 is a unique HDAC isoform that deacetylates non-histone proteins and is primarily located in the cytoplasm. It also has two catalytic domains and a zinc-finger ubiquitin binding domain (Zf-UBD) unlike other HDACs. HDAC6 plays a critical role in various cellular processes, including cell motility, protein degradation, cell proliferation, and transcription. Hence, the deregulation of HDAC6 is associated with various malignancies. In this study, we report the design and synthesis of a series of HDAC6 inhibitors. We evaluated the synthesized compounds by HDAC enzyme assay and identified that compound 8g exhibited an IC50 value of 21 nM and 40-fold selective activity towards HDAC6. We also assessed the effect of compound 8g on various cell lines and determined its ability to increase protein acetylation levels by Western blotting. Furthermore, the increased acetylation of α-tubulin resulted in microtubule polymerization and changes in cell morphology. Our molecular docking study supported these findings by demonstrating that compound 8g binds well to the catalytic pocket via L1 loop of HDAC6 enzyme. Altogether, compound 8g represents a preferential HDAC6 inhibitor that could serve as a lead for the development of more potent and specific inhibitors.
Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Desacetilase 6 de Histona , Simulação de Acoplamento Molecular , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/química , Histonas/metabolismo , Ácidos Hidroxâmicos/químicaRESUMO
Indazole-based HDAC6 inhibitors with novel zinc-binding modifications were synthesized and evaluated to determine their potential to inhibit HDAC6. The analogs were subjected to a histone deacetylase (HDAC) enzyme assay, which led to identification of compounds 3a and 3b. Both compounds demonstrated higher potency and selectivity as HDAC6 inhibitors with IC50 values of 9.1 nM and 9.0 nM, respectively, and highlighted the importance of the hydroxamic acid moiety for binding to Zn2+ inside the catalytic pocket of HDAC enzymes. In the neuroblastoma SH-SY5Y cell line, both compounds efficiently acetylated α-tubulin but not histone H3 at a low concentration of 0.5 µM. Moreover, compounds 3a and 3b effectively reversed the deacetylation of α-tubulin caused by methamphetamine in the SH-SY5Y cell line, suggesting the potential usefulness of HDAC6 selective inhibition in restoring blood brain barrier integrity by reversing methamphetamine-induced deacetylation.
Assuntos
Inibidores de Histona Desacetilases , Neuroblastoma , Tubulina (Proteína) , Humanos , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Tubulina (Proteína)/metabolismoRESUMO
Since sirtuins (SIRTs) are closely associated with reactive oxygen species (ROS) and antioxidant system, the development of their selective inhibitors is drawing attention for understanding of cellular redox homeostasis. Here, we describe the pharmacological properties of SPC-180002, which incorporates a methyl methacrylate group as a key pharmacophore, along with its comprehensive molecular mechanism as a novel dual inhibitor of SIRT1/3. The dual inhibition of SIRT1/3 by SPC-180002 disturbs redox homeostasis via ROS generation, which leads to an increase in both p21 protein stability and mitochondrial dysfunction. Increased p21 interacts with and inhibits CDK, thereby interfering with cell cycle progression. SPC-180002 leads to mitochondrial dysfunction by inhibiting mitophagy, which is accompanied by a reduction in oxygen consumption rate. Consequently, SPC-180002 strongly suppresses the proliferation of cancer cells and exerts anticancer effect in vivo. Taken together, the novel SIRT1/3 dual inhibitor, SPC-180002, impairs mitochondrial function and redox homeostasis, thereby strongly inhibiting cell cycle progression and cancer cell growth.
Assuntos
Mitocôndrias , Sirtuína 1 , Sirtuína 1/genética , Sirtuína 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , HomeostaseRESUMO
HDAC6 and Hsp90, existing as a cytosolic complex play an important role in maintaining the protein homeostasis. The interplay of HDAC6 and Hsp90 has attracted wide attention due to their important role and promise as therapeutic targets in malignant cancers. Therefore, the discovery of dual inhibitors targeting HDAC6 and Hsp90 is of high importance. In the present study, we describe the design, synthesis, and biological evaluation of bifunctional inhibitors against HDAC6 and Hsp90 interplay. In particular, compound 6e shows a significant inhibitory activity against both HDAC6 and Hsp90 with IC50 values of 106 nM and 61 nM, respectively. Compound 6e promotes the acetylation of HDAC6 substrate proteins such as α-tubulin and Hsp90 via HDAC6 inhibition, and also induces the degradation of Hsp90 clients such as Her2, EGFR, Met, Akt, and HDAC6 via Hsp90 inhibition. Compound 6e consequently furnishes potent antiproliferative effect on gefitinib-resistant H1975 non-small cell lung cancer (NSCLC) with a GI50 value of 1.7 µM. In addition, compound 6e successfully achieved significant tumor growth inhibition in H1975 NSCLC xenograft model without noticeable abnormal behavior, body weight changes, and apparent ocular toxicity. We conclude that compound 6e constitutes an excellent tool as well as a valuable lead for assessment of Hsp90 and HDAC6 dual inhibition with a single molecule.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90 , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Humanos , Neoplasias Pulmonares/tratamento farmacológicoRESUMO
INTRODUCTION: Histone deacetylases (HDACs) have emerged as important therapeutic targets for various diseases, such as cancer and neurological disorders. Although a majority of HDAC inhibitors use hydroxamic acids as zinc binding groups, hydroxamic acid zinc-binding groups suffer from poor bioavailability and nonspecific metal-binding properties, necessitating a new zinc-binding group. Salicylic acid and its derivatives, well-known for their therapeutic value, have also been reported to chelate zinc ions in a bidentate fashion. This drew our attention towards replacing hydroxamic acid with salicylamide as a zinc-binding group. METHODS: In this study, for the first time, compound 5 possessing a novel salicylamide zinc-binding group was synthesized and evaluated biologically for its ability to inhibit various HDAC isoforms and induce acetylation upon α-tubulin and histone H3 among MDA-MB-231 cells. RESULTS: Compound 5 exhibits selective inhibition against class I HDAC isoforms (HDAC1, 2, and 3) over class II and IV HDAC isoforms (HDAC4, 6, and 11). The exposure of MDA-MB-231 cells to compound 5 efficiently induced the acetylation of more histone H3 than α-tubulin, suggesting that compound 5 is a class I selective HDAC inhibitor. Moreover, the molecular docking study indicated that the salicylamide zinc-binding group of compound 5 coordinates the active zinc ion of class I HDAC2 in a bidentate fashion. CONCLUSION: Overall, salicylamide represents a novel zinc-binding group for the development of class I selective HDAC inhibitors. GRAPHICAL ABSTRACT: (http://links.lww.com/MD/G668).
Assuntos
Inibidores de Histona Desacetilases , Histonas , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Isoformas de Proteínas , Salicilamidas , Tubulina (Proteína) , Zinco/farmacologiaRESUMO
PROTACs employ the proteosome-mediated proteolysis via E3 ligase and recruit the natural protein degradation machinery to selectively degrade the cancerous proteins. Herein, we have designed and synthesized heterobifunctional small molecules that consist of different linkers tethering KRIBB11, a HSF1 inhibitor, with pomalidomide, a commonly used E3 ligase ligand for anticancer drug development.
Assuntos
Antineoplásicos , Desenvolvimento de Medicamentos , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteólise , Ubiquitina-Proteína LigasesRESUMO
The coronavirus disease 2019 (COVID-19) vaccines are categorized according to the manufacturing technique, including mRNA vaccines and adenovirus vector vaccines. According to previous studies, the reported efficacy of the COVID-19 vaccine is excellent regardless of the type of vaccine, and the majority of studies have shown similar results for safety. Most of the adverse reactions after vaccination were mild or moderate grade, and severe reactions were reported in a very small proportion. However, the adverse reactions that might occur after nationwide vaccinations can contribute to crowding of emergency departments, and this can further lead to significant obstacles to providing necessary treatment for life-threatening conditions. Therefore, as emergency physicians, we would like to present some concerns and suggestions to prevent these predictable problems.
RESUMO
Heat shock protein 90 (Hsp90) plays an important role in cancer cell proliferation, survival, and migration by regulating the maturation and stabilization of numerous oncoproteins. Despite significant efforts in developing Hsp90 inhibitors, none of these have been approved for clinical use, mostly due to toxicity, such as liver, cardiac, and retinal toxicity. To avoid undesirable toxicity, we herein report a hydrogen peroxide-activated Hsp90 inhibitor, Boro-BZide (3), which is capable of selectively targeting cancer cells over normal cells. Boro-BZide (3) can be activated by high levels of hydrogen peroxide, releasing its parent active Hsp90 inhibitor. The mechanism of action was determined by a series of experiments including fluorescence polarization assay, cell viability assay, western blotting, high-pressure liquid chromatography (HPLC), and fluorescence-activated cell sorting (FACS) analysis. These efforts ultimately led to the identification of a novel hydrogen peroxide-activated Hsp90 prodrug with improved therapeutic index, which was less prone to furnish unwanted adverse effects. This hydrogen peroxide-responsive prodrug strategy will be beneficial for overcoming the toxicity hurdles of Hsp90 inhibitors for clinical application.
Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Peróxido de Hidrogênio/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Inhibition of the molecular chaperone heat shock protein 90 (Hsp90) represents a promising approach for cancer treatment. BIIB021 is a highly potent Hsp90 inhibitor with remarkable anticancer activity; however, its clinical application is limited by lack of potency and response. In this study, we aimed to investigate the impact of replacing the hydrophobic moiety of BIIB021, 4-methoxy-3,5-dimethylpyridine, with various five-membered ring structures on the binding to Hsp90. A focused array of N7/N9-substituted purines, featuring aromatic and non-aromatic rings, was designed, considering the size of hydrophobic pocket B in Hsp90 to obtain insights into their binding modes within the ATP binding site of Hsp90 in terms of π-π stacking interactions in pocket B as well as outer α-helix 4 configurations. The target molecules were synthesized and evaluated for their Hsp90α inhibitory activity in cell-free assays. Among the tested compounds, the isoxazole derivatives 6b and 6c, and the sole six-membered derivative 14 showed favorable Hsp90α inhibitory activity, with IC50 values of 1.76 µM, 0.203 µM, and 1.00 µM, respectively. Furthermore, compound 14 elicited promising anticancer activity against MCF-7, SK-BR-3, and HCT116 cell lines. The X-ray structures of compounds 4b, 6b, 6c, 8, and 14 bound to the N-terminal domain of Hsp90 were determined in order to understand the obtained results and to acquire additional structural insights, which might enable further optimization of BIIB021.
Assuntos
Antineoplásicos/síntese química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Adenina/análogos & derivados , Adenina/química , Adenina/farmacologia , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Células HCT116 , Proteínas de Choque Térmico HSP90/química , Humanos , Isoxazóis/química , Células MCF-7 , Camundongos , Ligação Proteica , Piridinas/química , Piridinas/farmacologia , Relação Estrutura-AtividadeRESUMO
Chlorambucil is a nitrogen mustard-based DNA alkylating drug, which is widely used as a front-line treatment of chronic lymphocytic leukaemia (CLL). Despite its widespread application and success for the initial treatment of leukaemia, a majority of patients eventually develop acquired resistance to chlorambucil. In this regard, we have designed and synthesised a novel hybrid molecule, chloram-HDi that simultaneously impairs DNA and HDAC enzymes. Chloram-HDi efficiently inhibits the proliferation of HL-60 and U937 leukaemia cells with GI50 values of 1.24 µM and 1.75 µM, whereas chlorambucil exhibits GI50 values of 21.1 µM and 37.7 µM against HL-60 and U937 leukaemia cells, respectively. The mechanism behind its remarkably enhanced cytotoxicity is that chloram-HDi not only causes a significant DNA damage of leukaemia cells but also downregulates DNA repair protein, Rad52, resulting in the escalation of its DNA-damaging effect. Furthermore, chloram-HDi inhibits HDAC enzymes to induce the acetylation of α-tubulin and histone H3.
Assuntos
Antineoplásicos/farmacologia , Clorambucila/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clorambucila/síntese química , Clorambucila/química , Dano ao DNA , DNA de Neoplasias/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Thiazolidinedione is a five-membered heterocycle that is widely used in drug discovery endeavors. In this study, we report the design, synthesis, and biological evaluation of a series of thiazolidinedione-based HDAC6 inhibitors. In particular, compound 6b exerts an excellent inhibitory activity against HDAC6 with an IC50 value of 21 nM, displaying a good HDAC6 selectivity over HDAC1. Compound 6b dose-dependently induces the acetylation level of α-tubulin via inhibition of HDAC6 in human neuroblastoma SH-SY5Y cell line. Moreover, compound 6b efficiently reverses methamphetamine-induced morphology changes of SH-SY5Y cells via regulating acetylation landscape of α-tubulin. Collectively, compound 6b represents a novel HDAC6-isoform selective inhibitor and demonstrates promising therapeutic potential for the treatment of methamphetamine addiction.
Assuntos
Descoberta de Drogas , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases , Tiazolidinedionas , Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Transtornos Relacionados ao Uso de Anfetaminas/enzimologia , Linhagem Celular Tumoral , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Tiazolidinedionas/síntese química , Tiazolidinedionas/química , Tiazolidinedionas/farmacologiaRESUMO
To develop novel CNS penetrant HDAC inhibitors, a new series of HDAC inhibitors having benzoheterocycle were designed, synthesized, and biologically evaluated. Among the synthesized compounds, benzothiazole derivative 9b exhibited a remarkable anti-proliferative activity (GI50 = 2.01 µM) against SH-SY5Y cancer cell line in a dose and time-dependent manner, better than the reference drug SAHA (GI50 = 2.90 µM). Moreover, compound 9b effectively promoted the accumulation of acetylated Histone H3 and α-tubulin through inhibition of HDAC1 and HDAC6 enzymes, respectively. HDAC enzyme assay also confirmed that compound 9b efficiently inhibited HDAC1 and HDAC6 isoforms with IC50 values of 84.9 nM and 95.9 nM. Furthermore, compound 9b inhibited colony formation capacity of SH-SY5Y cells, which is considered a hallmark of cell carcinogenesis and metastatic potential. The theoretical prediction, in vitro PAMPA-BBB assay, and in vivo brain pharmacokinetic studies confirmed that compound 9b had much higher BBB permeability than SAHA. In silico docking study demonstrated that compound 9b fitted in the substrate binding pocket of HDAC1 and HDAC6. Taken together, compound 9b provided a novel scaffold for developing CNS penetrant HDAC inhibitors and therapeutic potential for CNS-related diseases.
Assuntos
Peptídeos beta-Amiloides/química , Histona Desacetilase 1 , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Simulação de Acoplamento Molecular , Proteínas de Neoplasias , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/química , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/química , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Neoplasias/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismoRESUMO
Histone deacetylase 6 (HDAC6) is an important target for the treatment of diverse diseases including cancer, neurodegenerative diseases, autoimmune disorders, inflammation, drug addiction, and viral infection. Therefore, the discovery of HDAC6-isoform selective inhibitors is of high importance for clinical applications. Here, we present an approach to discover HDAC6-isoform selective inhibitors. To our best knowledge, we for the first time perform a virtual screening campaign in the surface and channel region of HDAC6 enzyme, followed by rational installation of zinc binding group for the development of HDAC6-isoform selective inhibitors. Consequently, this approach establishes the proof of principle for the discovery of HDAC6-isoform selective inhibitors and successfully provides our lead compound 3. In particular, compound 3 inhibits HDAC6 enzyme with an IC50 value of 56â¯nM and displays an excellent HDAC6 selectivity over other HDAC isoforms in HDAC enzyme assay. Furthermore, the exposure of SH-SY5Y cells with compound 3 significantly promotes the acetylation of α-tubulin at the low concentration of 0.5⯵M, but not the acetylation of Histone H3 up to 20⯵M. Thus, our lead compound 3 represents a novel HDAC6-isoform selective inhibitor and warrants further studies for therapeutic evaluation.
Assuntos
Antraquinonas/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Acetilação/efeitos dos fármacos , Antraquinonas/química , Antraquinonas/uso terapêutico , Linhagem Celular Tumoral , Ensaios Enzimáticos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Isoformas de Proteínas , Tubulina (Proteína)/metabolismo , Zinco/químicaRESUMO
Methamphetamine (METH) acts strongly on the nervous system and damages neurons and is known to cause neurodegenerative diseases such as Alzheimer's and Parkinson's. Flavonoids, polyphenolic compounds present in green tea, red wine and several fruits exhibit antioxidant properties that protect neurons from oxidative damage and promote neuronal survival. Especially, epicatechin (EC) is a powerful flavonoid with antibacterial, antiviral, antitumor and antimutagenic effects as well as antioxidant effects. We therefore investigated whether EC could prevent METH-induced neurotoxicity using HT22 hippocampal neuronal cells. EC reduced METH-induced cell death of HT22 cells. In addition, we observed that EC abrogated the activation of ERK, p38 and inhibited the expression of CHOP and DR4. EC also reduced METH-induced ROS accumulation and MMP. These results suggest that EC may protect HT22 hippocampal neurons against METH-induced cell death by reducing ER stress and mitochondrial damage.
RESUMO
Targeted therapy is an emerging paradigm in the development of next-generation anticancer drugs. Heat shock factor 1 (HSF1) has been identified as a promising drug target because it regulates several pathways responsible for cancer cell growth, metastasis, and survival. Studies have clearly demonstrated that HSF1 is an effective drug target. Herein, we provide a concise yet comprehensive and integrated overview of progress in developing small molecule inhibitors of HSF1 as next-generation anticancer chemotherapeutics while critically evaluating their potential and challenges. We believe that this review will provide a better understanding of important concepts helpful for outlining the strategy to develop new chemotherapeutic agents with promising anticancer activities by targeting HSF1.
Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Fatores de Transcrição de Choque Térmico/metabolismo , Terapia de Alvo Molecular , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Fatores de Transcrição de Choque Térmico/química , Humanos , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Relação Estrutura-AtividadeRESUMO
Aspirin is one of the oldest drugs for the treatment of inflammation, fever, and pain. It is reported to covalently modify COX-2 enzyme by acetylating a serine amino acid residue. By virtue of aspirin's acetylating potential, we for the first time developed novel acetyl-donating HDAC inhibitors. In this study, we report the design, synthesis, in silico docking study, and biological evaluation of acetyl-donating HDAC inhibitors. The exposure of MDA-MB-231 cells with compound 4c significantly promotes the acetylation of α-tubulin and histone H3, which are substrates of HDAC6 and HDAC1, respectively. In silico docking simulation also indicates that compound 4c tightly binds to the deep substrate-binding pocket of HDAC6 by coordinating the active zinc ion in a bidentate manner and forming hydrogen bond interactions with Ser531 and His573 amino acid residues. In particular, compound 4c (GI50 = 147 µM) affords the significant enhancement of anti-proliferative effect on MDA-MB-231 cells, compared with its parent compound 2c (GI50 > 1000 µM) and acetyl-donating group deficient compound 6 (GI50 = 554 µM). Overall, compound 4c presents a novel strategy for developing acetyl-donating HDAC inhibitors.
Assuntos
Anti-Inflamatórios não Esteroides/química , Aspirina/química , Inibidores de Histona Desacetilases/química , Simulação de Acoplamento Molecular/métodos , Anti-Inflamatórios não Esteroides/metabolismo , Aspirina/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Cristalografia por Raios X/métodos , Inibidores de Histona Desacetilases/metabolismo , Humanos , Estrutura Terciária de ProteínaRESUMO
Triple-negative breast cancers (TNBCs) are the most aggressive and metastatic subtype of breast cancers and exhibit poor clinical outcome due to the lack of drug target receptors such as estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (Her2). The limited effectiveness of therapeutic options and the poor prognosis of TNBC patients emphasize the urgent need for identifying new therapeutic agents. In this regard, heat shock protein 90 (Hsp90) has emerged as a promising therapeutic target for the treatment of TNBCs. Hsp90 is a molecular chaperone that regulates the folding, stability, and function of many oncogenic proteins. Hence, the inhibition of Hsp90 chaperone function leads to a simultaneous blockage of multiple signaling pathways in the proliferation and survival of cancers. In the present study, we performed the design, synthesis, and biological evaluation of Hsp90 inhibitors and found that a synthetic small molecule, DPide exerted a potent anticancer activity against TNBC cell line, MDAMB231 and nonsmall cell lung cancer (NSCLC) cell line, H1975 with GI50 values of 0.478 and 1.67 µM, respectively. Softagar colony formation assay also revealed that DPide suppressed the anchorageindependent growth of MDAMB231 cells. Western blot analysis indicated that the treatment of MDAMB231 cells with DPide induced the proteasomal degradation of EGFR, Her2, Met, Akt, cRaf, and Cdk4 and the consequent cleavage of PARP, leading to apoptotic cell death. DPide also inhibited the migration and MMP9 activity of MDAMB231 cells, suggesting that the metastatic potential of TNBCs could be suppressed by DPide. Collectively, DPide offers an effective therapeutic option for the treatment TNBCs.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas de Ciclo Celular/química , Chaperoninas/química , Bibliotecas de Moléculas Pequenas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperoninas/antagonistas & inibidores , Chaperoninas/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Conformação Proteica/efeitos dos fármacos , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/síntese química , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. Therefore, Hsp90 has emerged as an attractive target in the field of cancer chemotherapy. In this study, we report the design, synthesis, and biological evaluation of a series of Hsp90 inhibitors. In particular, compound 30f shows a significant Hsp90α inhibitory activity with IC50 value of 5.3 nM and an excellent growth inhibition with GI50 value of 0.42 µM against non-small cell lung cancer cells, H1975. Compound 30f effectively reduces the expression levels of Hsp90 client proteins including Her2, EGFR, Met, Akt, and c-Raf. Consequently, compound 30f promotes substantial cleavages of PARP, Caspase 3, and Caspase 8, indicating that 30f induces cancer cell death via apoptotic pathway. Moreover, cytochrome P450 assay indicates that compound 30f has weak inhibitory effect on the activities of five major P450 isoforms (IC50 > 5 µM for 1A2, 2C9, 2C19, 2D6, and 3A), suggesting that clinical interactions between 30f and the substrate drugs of the five major P450 isoforms are not expected. Compound 30f also inhibits the tumor growth in a mouse xenograft model bearing subcutaneous H1975 without noticeable abnormal behavior and body weight changes. The immunostaining and western immunoblot analysis of EGFR, Met, Akt in xenograft tissue sections of tumor further demonstrate a good agreement with the in vitro results.
Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Resorcinóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Proliferação de Células/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Resorcinóis/química , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
BACKGROUND: Methamphetamine (METH) is a commonly abused drug that may result in neurotoxic effects. Recent studies have suggested that involvement of neuroinflammatory processes in brain dysfunction is induced by misuse of this drug. However, the mechanism underlying METH-induced inflammation and neurotoxicity in neurons is still unclear. In this study, we investigated whether asiatic acid (AA) effected METH-mediated neuroinflammation and neurotoxicity in dopaminergic neuronal cells. And we further determined whether the effect involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK) pathway. METHODS: We used the human dopaminergic neuroblastoma SH-SY5Y cell line, murine microglial BV2 cell line, and primary culture of rat embryo mesencephalic neurons. Pro-inflammatory cytokine production was monitored by ELISA and RT/real-time PCR. The cell cycle distribution and mitochondrial membrane integrity was analyzed by flow cytometry. We used immunoblotting, DNA-binding activity, and immunofluorescence staining to analyze the effect of AA on activation of the NF-κB, STAT3, MAPK-ERK, and apoptosis signaling pathways. RESULTS: METH induced TNF receptor (TNFR) expression and led to morphological changes of cells. Additionally, this drug increased pro-inflammatory cytokine (TNFα and IL-6) expression. AA significantly suppressed METH-induced TNFR expression in concentration dependent. Increased secretion of TNFα and IL-6 was inhibited in METH-stimulated neuronal cells by AA administration. AA showed significant protection against METH-induced translocation of NF-κB/STAT3 and ERK phosphorylation. AA inhibited METH-induced proteolytic fragmentation of caspase-3 and PARP. The pro-apoptotic protein Bax was significantly decreased, while the anti-apoptotic protein Bcl-xL was increased by AA treatment in METH-stimulated cells. A similar protective effect of AA on mitochondrial membrane integrity was also confirmed by flow cytometry and immunofluorescence staining. CONCLUSIONS: Based on the literatures and our findings, AA is a promising candidate for an anti-neurotoxic agent, and it can potentially be used for the prevention and treatment of various neurological disorders.