Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622198

RESUMO

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Assuntos
Ferro , Lipocalina-2 , Cirrose Hepática , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferro/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
2.
ACS Appl Bio Mater ; 4(9): 7070-7080, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006939

RESUMO

In skeletal-muscle regeneration, it is critical to promote efferocytosis of immune cells and differentiation of satellite cells/postnatal muscle stem cells at the damaged sites. With the optimized poloxamer 407 composition gelled at body temperature, the drugs can be delivered locally. The purpose of this study is to develop a topical injection therapeutic agent for muscle regeneration, sarcopenia, and cachexia. Herein, we construct an injectable, in situ hydrogel system consisting of CD146, IGF-1, collagen I/III, and poloxamer 407, termed CIC gel. The secreted CD146 then binds to VEGFR2 on the muscle surface and effectively induces efferocytosis of neutrophils and macrophages. IGF-1 promotes satellite cell differentiation, and biocompatible collagen evades immune responses of the CIC gel. Consequently, these combined molecules activate muscle regeneration via autophagy and suppress muscle inflammation and apoptosis. Conclusively, we provide an applicable concept of the myogenesis-activating protein formulation, broadening the thermoreversible hydrogel to protein therapeutics for damaged muscle recovery.


Assuntos
Hidrogéis , Nanopartículas , Antígeno CD146/metabolismo , Colágeno/metabolismo , Hidrogéis/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Músculo Esquelético , Nanopartículas/uso terapêutico , Poloxâmero/farmacologia , Cicatrização
3.
Signal Transduct Target Ther ; 5(1): 186, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883951

RESUMO

Sterol regulatory element binding protein-2 (SREBP-2) is activated by cytokines or pathogen, such as virus or bacteria, but its association with diminished cholesterol levels in COVID-19 patients is unknown. Here, we evaluated SREBP-2 activation in peripheral blood mononuclear cells of COVID-19 patients and verified the function of SREBP-2 in COVID-19. Intriguingly, we report the first observation of SREBP-2 C-terminal fragment in COVID-19 patients' blood and propose SREBP-2 C-terminal fragment as an indicator for determining severity. We confirmed that SREBP-2-induced cholesterol biosynthesis was suppressed by Sestrin-1 and PCSK9 expression, while the SREBP-2-induced inflammatory responses was upregulated in COVID-19 ICU patients. Using an infectious disease mouse model, inhibitors of SREBP-2 and NF-κB suppressed cytokine storms caused by viral infection and prevented pulmonary damages. These results collectively suggest that SREBP-2 can serve as an indicator for severity diagnosis and therapeutic target for preventing cytokine storm and lung damage in severe COVID-19 patients.


Assuntos
Betacoronavirus/patogenicidade , Colesterol/biossíntese , Infecções por Coronavirus/genética , Síndrome da Liberação de Citocina/genética , Interações Hospedeiro-Patógeno/genética , Leucócitos Mononucleares/imunologia , Pneumonia Viral/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Betacoronavirus/imunologia , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/mortalidade , Síndrome da Liberação de Citocina/virologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Unidades de Terapia Intensiva , Interleucina-1beta/genética , Interleucina-1beta/imunologia , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , NF-kappa B/genética , NF-kappa B/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Cultura Primária de Células , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/imunologia , SARS-CoV-2 , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/imunologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
4.
Environ Sci Pollut Res Int ; 27(23): 28912-28930, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32418108

RESUMO

The impact of industrial activities on atmospheric volatile organic compounds (VOCs) in the Sihwa-Banwol complexes, i.e., the largest industrial area in Korea, was investigated. More than 60 VOCs were determined from 850 samples collected from four sites in and around the complexes through a 2-year monitoring campaign from 2005 to 2007. The VOCs of particular concern found in the area were benzene, toluene, ethylbenzene, xylenes, trichloroethylene, and formaldehyde, given their toxicity, concentration, and detection frequency. Toluene was the most abundant one. The VOC concentration rankings were consistent with their emission rankings. Most VOCs had higher concentrations at the industrial sites than at residential sites, indicating a significant impact of industrial emissions. The ambient levels of benzene and formaldehyde were additionally affected by vehicular emissions and secondary formation, respectively. Overall, the VOC levels increased in winter and at night, because of the local weather conditions. In contrast, the formaldehyde concentration increased in summer, owing to its secondary formation in the atmosphere. The ambient VOC levels in Sihwa-Banwol were higher than those in other parts of Korea. Additionally, the cumulative cancer risks posed by the toxic VOCs exceeded a tolerable risk level of 1 × 10-4 in not only the industrial areas but also the residential areas. The sum of the non-cancer risks in both areas significantly exceeded the threshold criterion of 1. The large amounts of aromatic compounds emitted from the industrial complexes are believed to play a crucial role in the elevated levels of surface ozone in the Seoul metropolitan area during the summer season. Therefore, comprehensive measures for controlling the VOC emissions in the Sihwa-Banwol area need to be prioritized to reduce the health risks for residents of not only this area but also the capital Seoul and its surrounding areas.


Assuntos
Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , República da Coreia , Seul , Emissões de Veículos/análise
5.
BMB Rep ; 52(1): 64-69, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30526769

RESUMO

The loss of skeletal muscle, called sarcopenia, is an inevitable event during the aging process, and significantly impacts quality of life. Autophagy is known to reduce muscle atrophy caused by dysfunctional organelles, even though the molecular mechanism remains unclear. Here, we have discuss the current understanding of exercise-induced autophagy activation in skeletal muscle regeneration and remodeling, leading to sarcopenia intervention. With aging, dysregulation of autophagy flux inhibits lysosomal storage processes involved in muscle biogenesis. AMPK-ULK1 and the FoxO/PGC-1ɑ signaling pathways play a critical role in the induction of autophagy machinery in skeletal muscle, thus these pathways could be targets for therapeutics development. Autophagy has been also shown to be a critical regulator of stem cell fate, which determines satellite cell differentiation into muscle fiber, thereby increasing muscle mass. This review aims to provide a comprehensive understanding of the physiological role of autophagy in skeletal muscle aging and sarcopenia. [BMB Reports 2019; 52(1): 64-69].


Assuntos
Exercício Físico/fisiologia , Condicionamento Físico Animal/fisiologia , Sarcopenia/terapia , Adenilato Quinase , Envelhecimento , Animais , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Diferenciação Celular , Proteína Forkhead Box O1 , Humanos , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais
6.
Thromb Haemost ; 118(10): 1776-1789, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30235477

RESUMO

Sepsis develops because of overwhelming inflammatory responses to bacterial infection, and disrupts vascular integrity. Stabilin-1 (STAB-1) is a phagocytic receptor, which mediates efferocytosis in a phosphatidylserine (PS)-dependent manner. STAB-1 is expected to play important roles in efferocytosis during sepsis. Here, we determined the role of STAB-1 in maintaining and restoring vascular integrity. Macrophages and vascular endothelial cells were used to assess the effect of STAB-1 on survival rate, phagocytic activity, vascular permeability and transendothelial migration (TEM). Additionally, we investigated whether the high-mobility group box 1 (HMGB1)-receptor for advanced glycated end products complex interfered with the binding of Stab1 to PS. Mortality rate was higher in the Stab1-knockout mice than in the wild-type mice, and STAB-1 deficiency was related to reduced macrophage-mediated efferocytosis and the disruption of vascular integrity, which increased vascular permeability, and enhanced TEM. STAB-1 deficiency promoted lung injury, and elevated the expression of sepsis markers. The exogenous application of the anti-HMGB1 neutralizing antibody improved efferocytosis, vascular integrity and survival rate in sepsis. Collectively, our findings indicated that STAB-1 regulated and maintained vascular integrity through the clearance of infected apoptotic endothelial cells. Moreover, our results suggested that interventions targeting vascular integrity by STAB-1 signalling are promising therapeutic approaches to sepsis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Endotélio Vascular/fisiologia , Inflamação/imunologia , Macrófagos/fisiologia , Sepse/imunologia , Animais , Permeabilidade Capilar , Moléculas de Adesão Celular Neuronais/genética , Feminino , Proteína HMGB1/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Fosfatidilserinas/metabolismo , Migração Transendotelial e Transepitelial
7.
EMBO Rep ; 19(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30224412

RESUMO

Coordinated expression of guidance molecules and their signal transduction are critical for correct brain wiring. Previous studies have shown that phospholipase C gamma1 (PLCγ1), a signal transducer of receptor tyrosine kinases, plays a specific role in the regulation of neuronal cell morphology and motility in vitro However, several questions remain regarding the extracellular stimulus that triggers PLCγ1 signaling and the exact role PLCγ1 plays in nervous system development. Here, we demonstrate that PLCγ1 mediates axonal guidance through a netrin-1/deleted in colorectal cancer (DCC) complex. Netrin-1/DCC activates PLCγ1 through Src kinase to induce actin cytoskeleton rearrangement. Neuronal progenitor-specific knockout of Plcg1 in mice causes axon guidance defects in the dorsal part of the mesencephalon during embryogenesis. Adult Plcg1-deficient mice exhibit structural alterations in the corpus callosum, substantia innominata, and olfactory tubercle. These results suggest that PLCγ1 plays an important role in the correct development of white matter structure by mediating netrin-1/DCC signaling.


Assuntos
Axônios/fisiologia , Encéfalo/embriologia , Netrina-1/metabolismo , Fosfolipase C gama/metabolismo , Animais , Axônios/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Receptor DCC/metabolismo , Feminino , Masculino , Mesencéfalo/embriologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Netrina-1/genética , Fosfolipase C gama/genética , Fosforilação , Gravidez , Quinases da Família src/metabolismo
8.
Oncotarget ; 9(5): 5752-5763, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464031

RESUMO

Colorectal cancer (CRC) is the third diagnosed cancer and the second leading cause of cancer-related deaths in the United States. Colorectal cancer is linked to inflammation and phospholipase Cγ1 (PLCγ1) is associated with tumorigenesis and the development of colorectal cancer; however, evidence of mechanisms connecting them remains unclear. The tight junctions (TJ), as intercellular junctional complexes, have an important role for integrity of the epithelial barrier to regulate the cellular permeability. Here we found that PLCγ1 regulated colitis and tumorigenesis in intestinal epithelial cells (IEC). To induce the colitis-associated cancer (CAC), we used the AOM/DSS model. Mice were sacrificed at 100 days (DSS three cycles) and 120 days (DSS one cycle). In a CAC model, we showed that the deletion of PLCγ1 in IEC decreased the incidence of tumors by enhancing apoptosis and inhibiting proliferation during tumor development. Accordingly, the deletion of PLCγ1 in IEC reduced colitis-induced epithelial inflammation via inhibition of pro-inflammatory cytokines and mediators. The PLCγ1 pathway in IEC accelerated colitis-induced epithelial damage via regulation of TJ proteins. CONCLUSIONS: Our findings suggest that PLCγ1 is a critical regulator of colitis and colorectal cancer and could further help in the development of therapy for colitis-associated cancer.

9.
Oncotarget ; 8(35): 58790-58800, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938597

RESUMO

The natural, phenolic lipid urushiol exhibits both antioxidant and anticancer activities; however, its biological activity on hepatocellular carcinoma (HCC) has not been previously investigated. Here, we demonstrate that an urushiol derivative, 3-decylcatechol (DC), induces human HCC Huh7 cell death by induction of autophagy. DC initiates the autophagic process by activation of the mammalian target of rapamycin signaling pathway via Unc-51-like autophagy activating kinase 1, leading to autophagosome formation. The autophagy inhibitor, chloroquine, suppressed autolysosome formation and cell death induction by DC, indicating an autophagic cell death. Interestingly, DC also activated the endoplasmic reticulum (ER) stress response that promotes autophagy via p62 transcriptional activation involving the inositol-requiring enzyme 1α/c-Jun N-terminal kinase/c-jun pathway. We also show that cytosolic calcium mobilization is necessary for the ER stress response and autophagy induction by DC. These findings reveal a novel mechanism by which this urushiol derivative induces autophagic cell death in HCC.

10.
Int J Mol Sci ; 18(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28524116

RESUMO

Recently, the interplay between autophagy and apoptosis has become an important factor in chemotherapy for cancer treatment. Inhibition of autophagy may be an effective strategy to improve the treatment of chemo-resistant cancer by consistent exposure to chemotherapeutic drugs. However, no reports have clearly elucidated the underlying mechanisms. Therefore, in this study, we assessed whether salinomycin, a promising anticancer drug, induces apoptosis and elucidated potential antitumor mechanisms in chemo-resistant prostate cancer cells. Cell viability assay, Western blot, annexin V/propidium iodide assay, acridine orange (AO) staining, caspase-3 activity assay, reactive oxygen species (ROS) production, and mitochondrial membrane potential were assayed. Our data showed that salinomycin alters the sensitivity of prostate cancer cells to autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the salinomycin-induced apoptosis. Notably, salinomycin decreased phosphorylated of AKT and phosphorylated mammalian target of rapamycin (mTOR) in prostate cancer cells. Pretreatment with LY294002, an autophagy and PI3K inhibitor, enhanced the salinomycin-induced apoptosis by decreasing the AKT and mTOR activities and suppressing autophagy. However, pretreatment with PD98059 and SB203580, an extracellular signal-regulated kinases (ERK), and p38 inhibitors, suppressed the salinomycin-induced autophagy by reversing the upregulation of ERK and p38. In addition, pretreatment with N-acetyl-l-cysteine (NAC), an antioxidant, inhibited salinomycin-induced autophagy by suppressing ROS production. Our results suggested that salinomycin induces apoptosis, which was related to ROS-mediated autophagy through regulation of the PI3K/AKT/mTOR and ERK/p38 MAPK signaling pathways.


Assuntos
Autofagia/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Flavonoides/farmacologia , Humanos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
11.
Oncol Rep ; 37(6): 3321-3328, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28498472

RESUMO

Salinomycin is a polyether ionophore antibiotic that has recently been shown to induce cell apoptosis in human cancer cells displaying multiple mechanisms of drug resistance. In the present study, we explored the impact of salinomycin on the apoptosis and autophagy as well as the correlation between those effects and endoplasmic reticulum (ER) stress molecular mechanisms in human glioma U87MG cells. Apoptosis, autophagy and reactive oxygen species (ROS) were analyzed using flow cytometry. In addition, expression levels of apoptosis-, autophagy- and ER stress-related proteins were determined by western blotting. The results showed that salinomycin induced apoptosis, ER stress and autophagy in glioma cancer cell lines. In addition, salinomycin also induced ROS generation, and the ROS scavenger N-acetyl-L-cysteine was found to inhibit the salinomycin-induced apoptosis, ER stress and autophagy. The inhibition of ER stress with 4-phenylbutyric acid depressed salinomycin-induced apoptosis and autophagy. Salinomycin increased the expression of autophagy marker protein, LC3B, and accumulation of acidic vesicular organelles. Furthermore, pre-treatment with the autophagy inhibitor 3-methyladenine showed potential in increasing the apoptosis rate induced by salinomycin in the U87MG cells. Taken together, these results revealed that salinomycin induced apoptosis and autophagy via ER stress mediated by ROS, suggesting that ER stress by salinomycin plays a dual function in both promoting and suppressing cell death.


Assuntos
Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioma/tratamento farmacológico , Piranos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioma/genética , Glioma/patologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
12.
Anticancer Res ; 37(4): 1747-1758, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28373437

RESUMO

BACKGROUND/AIM: Chemotherapy is a critical option for cancer treatment. However, consistent exposure to chemotherapeutic drugs promotes chemoresistance in cancer cells through diverse mechanisms. Accordingly, we investigated whether salinomycin, a monocarboxylic ionophore, could induce apoptosis in aggressive breast cancer cells or not, as well as its underlying mechanism. MATERIALS AND METHODS: Using salinomycin on two breast cancer cell lines, MCF-7 cells and MDA-MB-231 cells, cell viability, annexin V/propidium iodide staining, acridine orange staining, caspase-3/9 activity, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were assayed. RESULTS: In this study, salinomycin induced apoptosis and autophagy in MDA-MB-231 cells. Salinomycin-mediated ROS production led to mitochondrial dysfunction in MDA-MB-231 cells. Interestingly, treatment of N-acetyl-L-cysteine (NAC), a scavenger of ROS, attenuated salinomycin-induced apoptosis and autophagy. Moreover, autophagy inhibition is involved in acceleration of apoptosis induced by salinomycin. CONCLUSION: Salinomycin induced apoptosis and ROS production, that were blocked by autophagy, thus resulting in protecting cancer cells. This crosstalk of two different physiological responses (autophagy and apoptosis) induced by salinomycin might play pivotal roles in the relationship between autophagy and apoptosis of cancer cells.


Assuntos
Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Imunofluorescência , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células Tumorais Cultivadas
13.
Biomed Pharmacother ; 88: 1016-1024, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28178613

RESUMO

Lasalocid is an antibiotic from the group of carboxylic ionophores, produced by Streptomyces lasaliensis. But there was limited information of lasalocid on human prostate cancer cells. In the present studies, to better understand its effect in human prostate cancer cells, apoptosis and autophagy associated with possible signal pathways in vitro was examined. Our study showed that lasalocid mediated cell cycle arrest in G0/G1 phase by reducing G1 phase dependent proteins, indicating entering into apoptotic cell death pathway. Lasalocid-induced apoptosis was involved with reactive oxygen species (ROS) production, and mitochondrial hyperpolarization. In addition, lasalocid induced autophagy through microtubule-associated protein 1 light chain 3 (LC-3)-II conversion, acidic vesicular organelles formation and GFP-LC-3 punctuate, which was inhibited by 3-methyladenine (3-MA), a widely used pharmacological inhibitor of autophagy. Furthermore, the autophagic phenomena were mediated by production of ROS, confirming that inhibition of ROS with N-acetyl-l-cysteine, a ROS inhibitor, attenuated lasalocid-triggered autophagy. Inhibition of autophagy with 3-MA enhanced the lasalocid-induced apoptosis through enhanced ROS generation. Taken together, lasalocid should be useful in the search for new potential chemotherapeutic agents for understanding the molecular mechanisms of anticancer in prostate cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Lasalocida/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Masculino
14.
ACS Nano ; 11(1): 742-751, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28033461

RESUMO

Human bone marrow-derived mesenchymal stem cells (hBMSCs) present promising opportunities for therapeutic medicine. Carbon derivatives showed only marginal enhancement in stem cell differentiation toward bone formation. Here we report that red-light absorbing carbon nitride (C3N4) sheets lead to remarkable proliferation and osteogenic differentiation by runt-related transcription factor 2 (Runx2) activation, a key transcription factor associated with osteoblast differentiation. Accordingly, highly effective hBMSCs-driven mice bone regeneration under red light is achieved (91% recovery after 4 weeks compared to 36% recovery in the standard control group in phosphate-buffered saline without red light). This fast bone regeneration is attributed to the deep penetration strength of red light into cellular membranes via tissue and the resulting efficient cell stimulation by enhanced photocurrent upon two-photon excitation of C3N4 sheets near cells. Given that the photoinduced charge transfer can increase cytosolic Ca2+ accumulation, this increase would promote nucleotide synthesis and cellular proliferation/differentiation. The cell stimulation enhances hBMSC differentiation toward bone formation, demonstrating the therapeutic potential of near-infrared two-photon absorption of C3N4 sheets in bone regeneration and fracture healing.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Nanoestruturas/química , Nitrilas/farmacologia , Fótons , Fármacos Fotossensibilizantes/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Suturas Cranianas/efeitos dos fármacos , Modelos Animais de Doenças , Células HeLa , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Nitrilas/síntese química , Nitrilas/química , Osteogênese/efeitos dos fármacos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
15.
Pharmacol Rep ; 69(1): 90-96, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27912102

RESUMO

BACKGROUND: Toyocamycin, an antibiotic agent isolated from Streptomyces species, has been shown to have anticancer and chemopreventive effects on various cancer cells. Until now, Toyocamycin-induced apoptosis has not been reported to be involved in the regulation between mitogen-activated protein kinases (MAPKs) and reactive oxygen species (ROS) production. METHODS: Cell viability assay, western blot, cell-cycle arrest, annexin V/propidium iodide assay, reactive oxygen species (ROS) production, mitochondrial membrane potential and intracellular Ca2+ flux were assayed. RESULTS: We investigated the apoptotic effect of Toyocamycin and the underlying molecular mechanism in prostate cancer PC-3 cells. Toyocamycin treatment resulted in reduced cell viability of PC-3 cells, but not of non-malignant RWPE-1 cells. Toyocamycin enhanced apoptosis, mitochondrial dysfunction, and ROS production in PC-3 cells. In addition, MAPK proteins were activated upon Toyocamycin treatment. The p38 and extracellular signal-regulated kinases (ERK) activities were regulated by ROS-mediated signaling pathway underlying the Toyocamycin-induced apoptosis. Pretreatment with N-acetyl-l-cysteine (NAC) recovered the Toyocamycin-induced mitochondrial dysfunction, ROS, and apoptosis. Additionally, p38 stimulated ROS production and inhibitory effects on ERK activation, while ERK inhibited the ROS production and had no effect on p38 activation. CONCLUSION: ROS-mediated activation of p38/ERK partially contributes to Toyocamycin-induced apoptosis, and p38/ERK MAPKs regulate the ROS production in PC-3 cells.


Assuntos
Apoptose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Toiocamicina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Masculino
16.
Anticancer Res ; 36(11): 5835-5843, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27793906

RESUMO

BACKGROUND: Monensin is a carboxyl polyether ionophore that potently inhibits the growth of various cancer cells. Recently, the anticancer effects of monensin have been recognized based on its ability to induce apoptosis in cancer cells. However, anticancer effect of monensin and its mechanism of action have yet to be investigated, especially against human prostate cancer cells. MATERIALS AND METHODS: Cell viability assay, western blot, cell-cycle arrest, annexin V/propidium iodide assay, reactive oxygen species (ROS) production and intracellular Ca2+ flux were assayed. RESULTS: In this study, monensin significantly inhibited cell viability in a dose-dependent manner in prostate cell lines. Moreover, cell growth inhibition by monensin induced G1 phase cell-cycle arrest and apoptosis via regulation of cell cycle- and apoptosis-related proteins in PC-3 cells. In addition, monensin induced the production of ROS and the disruption of Ca2+ homeostasis, that was restored by diphenyleneiodonium, a mitochondrial ROS inhibitor and verapamil, a Ca2+ channel blocker, respectively, as confirmed by pro-caspase-3 activation and poly ADP ribose polymerase cleavage. CONCLUSION: Monensin induces cell-cycle arrest and apoptosis through regulation of cell cycle- and apoptosis-related proteins, resulting in induction of mitochondrial ROS- and Ca2+-dependent apoptosis, respectively.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Monensin/farmacologia , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/metabolismo
17.
Oncotarget ; 7(43): 70898-70911, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27765922

RESUMO

G-protein-coupled receptor 81 (GPR81) functions as a receptor for lactate and plays an important role in the regulation of anti-lipolytic effects in adipocytes. However, to data, a role for GPR81 in the tumor microenvironment has not been clearly defined. Here, GPR81 expression in breast cancer patients and several breast cancer cell lines was significantly increased compared with normal mammary tissues and cells. GPR81 knockdown resulted in impaired breast cancer growth and led to apoptosis both in vitro and in vivo. Furthermore, the inhibition of GPR81 signaling suppressed angiogenesis through a phosphoinositide 3-OH kinase (PI3K)/Akt-cAMP response element binding protein (CREB) pathway, which led to decreased production of the pro-angiogenic mediator amphiregulin (AREG). Overall, these findings identify GPR81 as a tumor-promoting receptor in breast cancer progression and suggest a novel mechanism that regulates GPR81-dependent activation of the PI3K/Akt signaling axis in tumor microenvironment.


Assuntos
Anfirregulina/metabolismo , Neoplasias da Mama/patologia , Neovascularização Patológica/patologia , Receptores Acoplados a Proteínas G/metabolismo , Microambiente Tumoral , Animais , Apoptose , Mama/irrigação sanguínea , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Separação Celular/métodos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Ácido Láctico/metabolismo , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
18.
BMC Cancer ; 16: 452, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405931

RESUMO

BACKGROUND: Silibinin, a biologically active compound of milk thistle, has chemopreventive effects on cancer cell lines. Recently it was reported that silibinin inhibited tumor growth through activation of the apoptotic signaling pathway. Although various evidences showed multiple signaling pathways of silibinin in apoptosis, there were no reports to address the clear mechanism of ROS-mediated pathway in prostate cancer PC-3 cells. Several studies suggested that reactive oxygen species (ROS) play an important role in various signaling cascades, but the primary source of ROS was currently unclear. METHODS: The effect of silibinin was investigated on cell growth of prostate cell lines by MTT assay. We examined whether silibinin induced apoptosis through production of ROS using flow cytometry. Expression of apoptosis-, endoplasmic reticulum (ER)-related protein and gene were determined by western blotting and RT-PCR, respectively. RESULTS: Results showed that silibinin triggered mitochondrial ROS production through NOX4 expression and finally led to induce apoptosis. In addition, mitochondrial ROS caused ER stress through disruption of Ca(2+) homeostasis. Co-treatment of ROS inhibitor reduced the silibinin-induced apoptosis through the inhibition of NOX4 expression, resulting in reduction of both Ca(2+) level and ER stress response. CONCLUSIONS: Taken together, silibinin induced mitochondrial ROS-dependent apoptosis through NOX4, which is associated with disruption of Ca(2+) homeostasis and ER stress response. Therefore, the regulation of NOX4, mitochondrial ROS producer, could be a potential target for the treatment of prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , NADPH Oxidases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Silimarina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Humanos , Masculino , Mitocôndrias/metabolismo , NADPH Oxidase 4 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Silibina
19.
Biochem Biophys Res Commun ; 473(2): 607-13, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27033598

RESUMO

Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore. It was reported to anticancer activity on various cancer cell lines. In this study, salinomycin was examined on apoptosis and autophagy through generation of reactive oxygen species (ROS) in osteosarcoma U2OS cells. Apoptosis, autophagy, mitochondrial membrane potential (MMP) and ROS were analyzed using flow cytometry. Also, expressions of apoptosis- and autophagy-related proteins were determined by western blotting. As a result, salinomycin triggered apoptosis of U2OS cells, which was accompanied by change of MMP and cleavage of caspases-3 and poly (ADP-ribose) polymerase. And salinomycin increased the expression of autophagy-related protein and accumulation of acidic vesicular organelles (AVO). Salinomycin-induced ROS production promotes both apoptosis and autophagy, as evidenced by the result that treatment of N-acetyl-l-cysteine (NAC), a ROS scavenger, attenuated both apoptosis and autophagy. In addition, inhibition of autophagy by 3-methyladenine (3 MA) enhanced the salinoymcin-induced apoptosis. Taken together, these results suggested that salinomycin-induced autophagy, as a survival mechanism, might be a potential strategy through ROS regulation in cancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Humanos , Ionóforos/farmacologia , Osteossarcoma/patologia
20.
Oncotarget ; 6(14): 12529-42, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25915426

RESUMO

O-GlcNAcylation is a reversible post-translational modification. O-GlcNAc addition and removal is catalyzed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. More recent evidence indicates that regulation of O-GlcNAcylation is important for inflammatory diseases and tumorigenesis. In this study, we revealed that O-GlcNAcylation was increased in the colonic tissues of dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated cancer (CAC) animal models. Moreover, the O-GlcNAcylation level was elevated in human CAC tissues compared with matched normal counterparts. To investigate the functional role of O-GlcNAcylation in colitis, we used OGA heterozygote mice, which have an increased level of O-GlcNAcylation. OGA(+/-) mice have higher susceptibility to DSS-induced colitis than OGA(+/+) mice. OGA(+/-) mice exhibited a higher incidence of colon tumors than OGA(+/+) mice. In molecular studies, elevated O-GlcNAc levels were shown to enhance the activation of NF-κB signaling through increasing the binding of RelA/p65 to its target promoters. We also found that Thr-322 and Thr352 in the p65-O-GlcNAcylation sites are critical for p65 promoter binding. These results suggest that the elevated O-GlcNAcylation level in colonic tissues contributes to the development of colitis and CAC by disrupting regulation of NF-κB-dependent transcriptional activity.


Assuntos
Colite/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/genética , NF-kappa B/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Western Blotting , Transformação Celular Neoplásica/genética , Colite/metabolismo , Colite/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA