Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Proc Natl Acad Sci U S A ; 119(29): e2110746119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858361

RESUMO

Intraneuronal inclusions of misfolded α-synuclein (α-syn) and prion-like spread of the pathologic α-syn contribute to progressive neuronal death in Parkinson's disease (PD). Despite the pathologic significance, no efficient therapeutic intervention targeting α-synucleinopathy has been developed. In this study, we provide evidence that astrocytes, especially those cultured from the ventral midbrain (VM), show therapeutic potential to alleviate α-syn pathology in multiple in vitro and in vivo α-synucleinopathic models. Regulation of neuronal α-syn proteostasis underlies the therapeutic function of astrocytes. Specifically, VM-derived astrocytes inhibited neuronal α-syn aggregation and transmission in a paracrine manner by correcting not only intraneuronal oxidative and mitochondrial stresses but also extracellular inflammatory environments, in which α-syn proteins are prone to pathologic misfolding. The astrocyte-derived paracrine factors also promoted disassembly of extracellular α-syn aggregates. In addition to the aggregated form of α-syn, VM astrocytes reduced total α-syn protein loads both by actively scavenging extracellular α-syn fibrils and by a paracrine stimulation of neuronal autophagic clearance of α-syn. Transplantation of VM astrocytes into the midbrain of PD model mice alleviated α-syn pathology and protected the midbrain dopamine neurons from neurodegeneration. We further showed that cografting of VM astrocytes could be exploited in stem cell-based therapy for PD, in which host-to-graft transmission of α-syn pathology remains a critical concern for long-term cell therapeutic effects.


Assuntos
Astrócitos , Transplante de Tecido Encefálico , Doença de Parkinson , Proteostase , alfa-Sinucleína , Animais , Astrócitos/transplante , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/patologia , Mesencéfalo/cirurgia , Camundongos , Doença de Parkinson/patologia , Doença de Parkinson/terapia , alfa-Sinucleína/metabolismo
4.
Mol Psychiatry ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35902630

RESUMO

There is a compelling need to develop disease-modifying therapies for Alzheimer's disease (AD), the most common neuro-degenerative disorder. Together with recent progress in vector development for efficiently targeting the central nervous system, gene therapy has been suggested as a potential therapeutic modality to overcome the limited delivery of conventional types of drugs to and within the damaged brain. In addition, given increasing evidence of the strong link between glia and AD pathophysiology, therapeutic targets have been moving toward those addressing glial cell pathology. Nurr1 and Foxa2 are transcription/epigenetic regulators that have been reported to cooperatively regulate inflammatory and neurotrophic response in glial cells. In this study, we tested the therapeutic potential of Nurr1 and Foxa2 gene delivery to treat AD symptoms and pathologies. A series of functional, histologic, and transcriptome analyses revealed that the combined expression of Nurr1 and Foxa2 substantially ameliorated AD-associated amyloid ß and Tau proteinopathy, cell senescence, synaptic loss, and neuro-inflammation in multiple in vitro and in vivo AD models. Intra-cranial delivery of Nurr1 and Foxa2 genes using adeno-associated virus (AAV) serotype 9 improved the memory and cognitive function of AD model mice. The therapeutic benefits of gene delivery were attained mainly by correcting pathologic glial function. These findings collectively indicate that AAV9-mediated Nurr1 and Foxa2 gene transfer could be an effective disease-modifying therapy for AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA