Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36827123

RESUMO

Elevenins are peptides found in a range of organisms, including arthropods, annelids, nematodes, and molluscs. They consist of 17 to 19 amino acid residues with a single conserved disulfide bond. The subject of this study, elevenin-Vc1, was first identified in the venom of the cone snail Conus victoriae (Gen. Comp. Endocrinol. 2017, 244, 11-18). Although numerous elevenin sequences have been reported, their physiological function is unclear, and no structural information is available. Upon intracranial injection in mice, elevenin-Vc1 induced hyperactivity at doses of 5 or 10 nmol. The structure of elevenin-Vc1, determined using nuclear magnetic resonance spectroscopy, consists of a short helix and a bend region stabilised by the single disulfide bond. The elevenin-Vc1 structural fold is similar to that of α-conotoxins such as α-RgIA and α-ImI, which are also found in the venoms of cone snails and are antagonists at specific subtypes of nicotinic acetylcholine receptors (nAChRs). In an attempt to mimic the functional motif, Asp-Pro-Arg, of α-RgIA and α-ImI, we synthesised an analogue, designated elevenin-Vc1-DPR. However, neither elevenin-Vc1 nor the analogue was active at six different human nAChR subtypes (α1ß1εδ, α3ß2, α3ß4, α4ß2, α7, and α9α10) at 1 µM concentrations.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Camundongos , Humanos , Animais , Conotoxinas/farmacologia , Caramujo Conus/metabolismo , Peçonhas , Receptores Nicotínicos/metabolismo , Peptídeos/metabolismo , Antagonistas Nicotínicos/farmacologia
2.
Cancer Cell ; 39(11): 1445-1447, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678151
3.
Br J Haematol ; 194(6): 999-1006, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34085278

RESUMO

Patients receiving targeted cancer treatments such as tyrosine kinase inhibitors (TKIs) have been classified in the clinically extremely vulnerable group to develop severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), including patients with chronic myeloid leukaemia (CML) taking TKIs. In addition, concerns that immunocompromised individuals with solid and haematological malignancies may not mount an adequate immune response to a single dose of SARS-CoV-2 BNT162b2 (Pfizer-BioNTech) vaccine have been raised. In the present study, we evaluated humoral and cellular immune responses after a first injection of BNT162b2 vaccine in 16 patients with CML. Seroconversion and cellular immune response before and after vaccination were assessed. By day 21 after vaccination, anti-Spike immunoglobulin G was detected in 14/16 (87·5%) of the patients with CML and all developed a neutralising antibody response [serum dilution that inhibits 50% infection (ID50 ) >50], including medium (ID50 of 200-500) or high (ID50 of 501-2000) neutralising antibodies titres in nine of the 16 (56·25%) patients. T-cell response was seen in 14/15 (93·3%) evaluable patients, with polyfunctional responses seen in 12/15 (80%) patients (polyfunctional CD4+ response nine of 15, polyfunctional CD8+ T-cell response nine of 15). These data demonstrate the immunogenicity of a single dose of SARS-CoV-2 BNT162b2 vaccine in most patients with CML, with both neutralising antibodies and polyfunctional T-cell responses seen in contrast to patients with solid tumour or lymphoid haematological malignancies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19 , Neoplasias Hematológicas/imunologia , Imunidade Celular/efeitos dos fármacos , Imunoglobulina G/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Vacina BNT162 , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Feminino , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Lancet Oncol ; 22(6): 765-778, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33930323

RESUMO

BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer-BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 µg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 µg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81-98) of 34 healthy controls; 21 (38%; 26-51) of 56 patients with solid cancer, and eight (18%; 10-32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75-99) of 19 patients with solid cancer, 12 (100%; 76-100) of 12 healthy controls, and three (60%; 23-88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17-47) of 33, 18 (86%; 65-95) of 21, and four (11%; 4-25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/imunologia , Neoplasias/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Vacina BNT162 , COVID-19/sangue , COVID-19/complicações , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Relação Dose-Resposta Imunológica , Feminino , Humanos , Imunogenicidade da Vacina/imunologia , Londres/epidemiologia , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/complicações , Neoplasias/virologia , Estudos Prospectivos , SARS-CoV-2 , País de Gales
6.
Elife ; 92020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33349334

RESUMO

The intricate lattice of Gn and Gc glycoprotein spike complexes on the hantavirus envelope facilitates host-cell entry and is the primary target of the neutralizing antibody-mediated immune response. Through study of a neutralizing monoclonal antibody termed mAb P-4G2, which neutralizes the zoonotic pathogen Puumala virus (PUUV), we provide a molecular-level basis for antibody-mediated targeting of the hantaviral glycoprotein lattice. Crystallographic analysis demonstrates that P-4G2 binds to a multi-domain site on PUUV Gc and may preclude fusogenic rearrangements of the glycoprotein that are required for host-cell entry. Furthermore, cryo-electron microscopy of PUUV-like particles in the presence of P-4G2 reveals a lattice-independent configuration of the Gc, demonstrating that P-4G2 perturbs the (Gn-Gc)4 lattice. This work provides a structure-based blueprint for rationalizing antibody-mediated targeting of hantaviruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Virus Puumala/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Monoclonais/imunologia , Arvicolinae , Células HEK293 , Humanos
7.
Nat Med ; 26(10): 1623-1635, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32807934

RESUMO

Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Infecções por Coronavirus/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Idoso , Subpopulações de Linfócitos B/imunologia , Basófilos/imunologia , Betacoronavirus , COVID-19 , Estudos de Casos e Controles , Ciclo Celular , Quimiocina CXCL10/imunologia , Quimiocinas/imunologia , Estudos de Coortes , Infecções por Coronavirus/sangue , Progressão da Doença , Feminino , Citometria de Fluxo , Hospitalização , Humanos , Memória Imunológica , Imunofenotipagem , Interleucina-10/imunologia , Interleucina-6/imunologia , Contagem de Leucócitos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Prognóstico , SARS-CoV-2 , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Regulação para Cima
8.
Proc Natl Acad Sci U S A ; 116(50): 25057-25067, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767754

RESUMO

Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes frequent outbreaks of severe neurologic and respiratory disease in humans with high case fatality rates. The 2 glycoproteins displayed on the surface of the virus, NiV-G and NiV-F, mediate host-cell attachment and membrane fusion, respectively, and are targets of the host antibody response. Here, we provide a molecular basis for neutralization of NiV through antibody-mediated targeting of NiV-F. Structural characterization of a neutralizing antibody (nAb) in complex with trimeric prefusion NiV-F reveals an epitope at the membrane-distal domain III (DIII) of the molecule, a region that undergoes substantial refolding during host-cell entry. The epitope of this monoclonal antibody (mAb66) is primarily protein-specific and we observe that glycosylation at the periphery of the interface likely does not inhibit mAb66 binding to NiV-F. Further characterization reveals that a Hendra virus-F-specific nAb (mAb36) and many antibodies in an antihenipavirus-F polyclonal antibody mixture (pAb835) also target this region of the molecule. Integrated with previously reported paramyxovirus F-nAb structures, these data support a model whereby the membrane-distal region of the F protein is targeted by the antibody-mediated immune response across henipaviruses. Notably, our domain-specific sequence analysis reveals no evidence of selective pressure at this region of the molecule, suggestive that functional constraints prevent immune-driven sequence variation. Combined, our data reveal the membrane-distal region of NiV-F as a site of vulnerability on the NiV surface.


Assuntos
Anticorpos Neutralizantes , Vírus Hendra , Proteínas Virais de Fusão , Internalização do Vírus , Anticorpos Monoclonais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Linhagem Celular Tumoral , Glicosilação , Células HEK293 , Vírus Hendra/química , Vírus Hendra/imunologia , Vírus Hendra/metabolismo , Vírus Hendra/fisiologia , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA