Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Public Health ; 17(7): 102473, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865774

RESUMO

BACKGROUND: Cancer patients often have weakened immune systems, resulting in a lower response to vaccines, especially those receiving immunosuppressive oncological treatment (OT). We aimed to assess the impact of OT on the humoral and T-cell response to the B.1 lineage and Omicron variant following COVID-19 vaccination in patients with solid and hematological neoplasms. METHODS: We conducted a prospective study on cancer patients, stratified into OT and non-OT groups, who received a two-dose series of the COVID-19 mRNA vaccine and a booster six months later. The outcomes measured were the humoral (anti-SARS-CoV-2 S IgG titers and ACE2-S interaction inhibition capacity) and cellular (SARS-CoV-2 S-specific T-cell spots per million PBMCs) responses against the B.1 lineage and Omicron variant. These responses were evaluated four weeks after the second dose (n = 98) and eight weeks after the booster dose (n = 71). RESULTS: The humoral response after the second vaccine dose against the B.1 lineage and Omicron variant was significantly weaker in the OT group compared to the non-OT group (q-value<0.05). A booster dose of the mRNA-1273 vaccine significantly improved the humoral response in the OT group, making it comparable to the non-OT group. The mRNA-1273 vaccine, designed for the original Wuhan strain, elicited a weaker humoral response against the Omicron variant compared to the B.1 lineage, regardless of oncological treatment or vaccine dose. In contrast, T-cell responses against SARS-CoV-2, including the Omicron variant, were already present after the second vaccine dose and were not significantly affected by oncological treatments. CONCLUSIONS: Cancer patients, particularly those receiving immunosuppressive oncological treatments, should require booster doses and adapted COVID-19 vaccines for new SARS-CoV-2 variants like Omicron. Future studies should evaluate the durability of the immune response and the efficacy of individualized regimens.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Neoplasias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Estudos Prospectivos , Masculino , COVID-19/imunologia , COVID-19/prevenção & controle , Feminino , Pessoa de Meia-Idade , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , SARS-CoV-2/imunologia , Idoso , Neoplasias/imunologia , Anticorpos Antivirais/sangue , Linfócitos T/imunologia , Imunização Secundária , Vacinação , Adulto , Imunidade Humoral , Imunoglobulina G/sangue , Hospedeiro Imunocomprometido , Imunidade Celular
2.
J Clin Microbiol ; 61(1): e0133122, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36537787

RESUMO

The standard algorithm for diagnosing hepatitis C virus (HCV) infection has two steps, an HCV antibody test for screening and a nucleic acid amplification test (NAAT) for confirmation. However, the HCV core antigen (HCVcAg) detection assay is an alternative for one-step diagnosis. We aimed to evaluate the diagnostic performance of the Abbott ARCHITECT HCV Ag assay to detect active hepatitis C in serum/plasma in people living with HIV/AIDS (PLWHA), through a systematic review and meta-analysis. PubMed, EMBASE, Scopus, Web of Science, and the Cochrane Library were searched until 20 September 2022 (PROSPERO, CRD42022348351). We included studies evaluating Abbott ARCHITECT HCV Ag assay (index assay) versus NAATs (reference test) in PLWHA coinfected with HCV who did not receive antiviral treatment for HCV. Meta-analysis was performed with the MIDAS module using Stata and random-effects models. The QUADAS-2 tool evaluated the risk of bias. The bivariate analysis was conducted on 11 studies with 2,407 samples. Pooled sensitivity was 0.95 (95% CI = 0.92 to 0.97), specificity 0.97 (95% CI = 0.93 to 0.99), positive likelihood ratio 37.76 (95% CI = 12.84 to 111.02), and negative likelihood ratio 0.06 (95% CI = 0.04 to 0.09). The area under the curve was 0.97 (95% CI = 0.20 to 1.00). For low prevalence (≤5%), the posttest probability that an individual with a positive test was a true positive ranged from 4% to 67%, whereas, at high prevalence (≥10%), the posttest probability was between 81% and 87%, indicating that a confirmatory test should be necessary, particularly with prevalence values of ≤1%. Regardless of prevalence, the probability that an individual with a negative test was a false negative was close to zero, indicating that the individual was not infected with HCV. In conclusion, the accuracy of the Abbott ARCHITECT HCV Ag assay was very good for HCV screening in serum/plasma samples from PLWHA. The clinical utility to confirm HCV infection was acceptable in high-prevalence settings (≥10%) but poor in low-prevalence settings (≤1%). Furthermore, it was excellent in excluding active HCV infection.


Assuntos
Infecções por HIV , Hepatite C , Humanos , Hepacivirus/genética , Sensibilidade e Especificidade , Hepatite C/complicações , Hepatite C/diagnóstico , Programas de Rastreamento , Antígenos da Hepatite C , Infecções por HIV/complicações
3.
Drugs ; 81(4): 419-443, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33400242

RESUMO

Direct-acting antivirals eliminate hepatitis C virus (HCV) in more than 95% of treated individuals and may abolish liver injury, arrest fibrogenesis, and reverse fibrosis and cirrhosis. However, liver regeneration is usually a slow process that is less effective in the late stages of fibrosis. What is more, fibrogenesis may prevail in patients with advanced cirrhosis, where it can progress to liver failure and hepatocellular carcinoma. Therefore, the development of antifibrotic drugs that halt and reverse fibrosis progression is urgently needed. Fibrosis occurs due to the repair process of damaged hepatic tissue, which eventually leads to scarring. The innate immune response against HCV is essential in the initiation and progression of liver fibrosis. HCV-infected hepatocytes and liver macrophages secrete proinflammatory cytokines and chemokines that promote the activation and differentiation of hepatic stellate cells (HSCs) to myofibroblasts that produce extracellular matrix (ECM) components. Prolonged ECM production by myofibroblasts due to chronic inflammation is essential to the development of fibrosis. While no antifibrotic therapy is approved to date, several drugs are being tested in phase 2 and phase 3 trials with promising results. This review discusses current state-of-the-art knowledge on treatments targeting the innate immune system to revert chronic hepatitis C-associated liver fibrosis. Agents that cause liver damage may vary (alcohol, virus infection, etc.), but fibrosis progression shows common patterns among them, including chronic inflammation and immune dysregulation, hepatocyte injury, HSC activation, and excessive ECM deposition. Therefore, mechanisms underlying these processes are promising targets for general antifibrotic therapies.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Humanos , Imunidade Inata/imunologia , Cirrose Hepática/imunologia
4.
Mar Drugs ; 18(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244488

RESUMO

Neglected Tropical Diseases (NTD) represent a serious threat to humans, especially for those living in poor or developing countries. Almost one-sixth of the world population is at risk of suffering from these diseases and many thousands die because of NTDs, to which we should add the sanitary, labor and social issues that hinder the economic development of these countries. Protozoan-borne diseases are responsible for more than one million deaths every year. Visceral leishmaniasis, Chagas disease or sleeping sickness are among the most lethal NTDs. Despite not being considered an NTD by the World Health Organization (WHO), malaria must be added to this sinister group. Malaria, caused by the apicomplexan parasite Plasmodium falciparum, is responsible for thousands of deaths each year. The treatment of this disease has been losing effectiveness year after year. Many of the medicines currently in use are obsolete due to their gradual loss of efficacy, their intrinsic toxicity and the emergence of drug resistance or a lack of adherence to treatment. Therefore, there is an urgent and global need for new drugs. Despite this, the scant interest shown by most of the stakeholders involved in the pharmaceutical industry makes our present therapeutic arsenal scarce, and until recently, the search for new drugs has not been seriously addressed. The sources of new drugs for these and other pathologies include natural products, synthetic molecules or repurposing drugs. The most frequent sources of natural products are microorganisms, e.g., bacteria, fungi, yeasts, algae and plants, which are able to synthesize many drugs that are currently in use (e.g. antimicrobials, antitumor, immunosuppressants, etc.). The marine environment is another well-established source of bioactive natural products, with recent applications against parasites, bacteria and other pathogens which affect humans and animals. Drug discovery techniques have rapidly advanced since the beginning of the millennium. The combination of novel techniques that include the genetic modification of pathogens, bioimaging and robotics has given rise to the standardization of High-Performance Screening platforms in the discovery of drugs. These advancements have accelerated the discovery of new chemical entities with antiparasitic effects. This review presents critical updates regarding the use of High-Throughput Screening (HTS) in the discovery of drugs for NTDs transmitted by protozoa, including malaria, and its application in the discovery of new drugs of marine origin.


Assuntos
Antiprotozoários/farmacologia , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Infecções por Euglenozoa/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Animais , Antiprotozoários/uso terapêutico , Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Resistência a Medicamentos , Infecções por Euglenozoa/parasitologia , Ensaios de Triagem em Larga Escala , Humanos , Malária Falciparum/parasitologia , Doenças Negligenciadas/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium malariae/efeitos dos fármacos , Plasmodium malariae/patogenicidade , Trypanosomatina/efeitos dos fármacos
5.
J Nanobiotechnology ; 17(1): 65, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092246

RESUMO

It is essential that prophylactic drugs do not interfere with the normal function of the immune system. The use of nanoparticles as vaginal microbicides is a promising prevention strategy against sexually transmitted infections. With that aim, our group is working with the G2-S16, a second generation carbosilane dendrimer with sulfonate groups in the periphery, which has been previously shown to be effective against HIV-1 and HSV-2 infection, and it is now on the road to clinical trials. Our objective in this new study is to assess the effects of G2-S16 on the immune barrier of the female reproductive tract. The expression of differentiation, maturation and activation markers was measured in epithelial cells, dendritic cells, M and GM macrophages, and T cells using RT-qPCR and flow cytometry. The results demonstrate that G2-S16 does not alter the natural immunity of the vagina, strongly supporting the biosafety of this dendrimer for clinical use.


Assuntos
Anti-Infecciosos/farmacologia , Dendrímeros/química , Sistema Imunitário/efeitos dos fármacos , Silanos/química , Vagina/metabolismo , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/efeitos adversos , Biomarcadores/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Tamanho da Partícula , RNA Mensageiro/metabolismo , Transdução de Sinais , Linfócitos T/efeitos dos fármacos
6.
Nanoscale ; 10(19): 8998-9011, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29726564

RESUMO

Infection with human immunodeficiency virus type 1 (HIV-1) continues to be a global public health issue, especially in low-resource countries. Sexual transmission is responsible for the majority of HIV-1 infections worldwide. Women are more susceptible to HIV-1 acquisition than men and represent nearly 50% of the HIV-infected population. Topical vaginal microbicides that act at the earlier stages of infection offer a prevention strategy to reduce the acquisition of HIV-1. Dendrimers are nano-sized, radially symmetric molecules with a well-defined and monodisperse structure consisting of tree-like arms or branches. We perform a TZM.bl cell line-based screening of two families of carbosilane dendrimers (6 nanocompounds: G1-S12P, G2-S24P, G3-S48P, G1-C12P, G2-C24P and G3-C48P) that we have previously synthesized, containing 12, 24 or 48 sulfonate (or carboxylate) end-groups and a polyphenolic core. This work shows that second- and third-generation sulfonate-ended carbosilane dendrimers with a polyphenolic core (G2-S24P and G3-S48P, respectively) display low cytotoxicity (CC50 > 300 µM) with virucidal anti-R5-HIV-1 activity (EC50 < 50 nM; therapeutic index >6000) causing irreversible HIV-1 inactivation (80-90%) by loss of HIV-1 RNA (40%), gp120 shedding (70-80%) and p24 capsid protein release (45-60%). Herein, we demonstrate that sulfonate end-groups and a flexible scaffold from carbosilane dendrimers strongly influence their properties acting as potent virucides.


Assuntos
Antivirais/farmacologia , Dendrímeros/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Silanos/química , Linhagem Celular , Dendrímeros/química , Feminino , Infecções por HIV , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/virologia , Masculino , Estrutura Molecular , Vírion/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA