Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 34(11): 15236-15251, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32959405

RESUMO

Allogeneic mesenchymal stem cells (MSCs) from young and healthy donors are reported to hold the potential to treat several immunological and degenerative disorders. However, recent data from animal studies and clinical trials demonstrate that immunogenicity and poor survival of transplanted MSCs impaired the efficacy of cells for regenerative applications. It is reported that initially immunoprivileged under in vitro conditions, MSCs are targeted by the host immune system after transplantation in the ischemic tissues in vivo. We performed in vitro (in MSCs) and in vivo (in the rat model of myocardial infarction [MI]) studies to elucidate the mechanisms responsible for the change in the immunophenotype of MSCs from immunoprivileged to immunogenic under ischemic conditions. We have recently reported that a soluble factor prostaglandin E2 (PGE2) preserves the immunoprivilege of allogeneic MSCs. In the current study, we found that PGE2 levels, which were elevated during normoxia, decreased in MSCs following exposure to hypoxia. Further, we found that proteasome-mediated degradation of cyclooxygenase-2 (COX2, rate-limiting enzyme in PGE2 biosynthesis) in hypoxic MSCs is responsible for PGE2 decrease and loss of immunoprivilege of MSCs. While investigating the mechanisms of COX2 degradation in hypoxic MSCs, we found that in normoxic MSCs, COP9 signalosome subunit 5 (CSN5) binds to COX2 and prevents its degradation by the proteasome. However, exposure to hypoxia leads to a decrease in CSN5 levels and its binding to COX2, rendering COX2 protein susceptible to proteasome-mediated degradation. This subsequently causes PGE2 downregulation and loss of immunoprivilege of MSCs. Maintaining COX2 levels in MSCs preserves immunoprivilege in vitro and improves the survival of transplanted MSCs in a rat model of MI. These data provide novel mechanistic evidence that PGE2 is downregulated in hypoxic MSCs which is responsible for the post-transplantation rejection of allogeneic MSCs. Therefore, our data suggest that the new strategies that target CSN5-COX2 signaling may improve survival and utility of transplanted allogeneic MSCs in the ischemic heart.


Assuntos
Ciclo-Oxigenase 2/química , Hipóxia/fisiopatologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/imunologia , Animais , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Ratos , Ratos Sprague-Dawley , Transplante Homólogo
2.
Adv Healthc Mater ; 8(16): e1900569, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31265217

RESUMO

Inflammation is tightly linked to tissue injury. In regenerative medicine, immune activation plays a key role in rejection of transplanted stem cells and reduces the efficacy of stem cell therapies. Next-generation smart biomaterials are reported to possess multiple biologic properties for tissue repair. Here, the first use of 0D titanium carbide (Ti3 C2 ) MXene quantum dots (MQDs) for immunomodulation is presented with the goal of enhancing material-based tissue repair after injury. MQDs possess intrinsic immunomodulatory properties and selectively reduce activation of human CD4+ IFN-γ+ T-lymphocytes (control 87.1 ± 2.0%, MQDs 68.3 ± 5.4%) while promoting expansion of immunosuppressive CD4+ CD25+ FoxP3+ regulatory T-cells (control 5.5 ± 0.7%, MQDs 8.5 ± 0.8%) in a stimulated lymphocyte population. Furthermore, MQDs are biocompatible with bone marrow-derived mesenchymal stem cells and induced pluripotent stem cell-derived fibroblasts. Finally, Ti3 C2 MQDs are incorporated into a chitosan-based hydrogel to create a 3D platform with enhanced physicochemical properties for stem cell delivery and tissue repair. This composite hydrogel demonstrates increased conductivity while maintaining injectability and thermosensitivity. These findings suggest that this new class of biomaterials may help bridge the translational gap in material and stem cell-based therapies for tissue repair and treatment of inflammatory and degenerative diseases.


Assuntos
Imunomodulação/efeitos dos fármacos , Pontos Quânticos , Medicina Regenerativa/métodos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fatores Imunológicos/farmacologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
3.
Cell Death Dis ; 10(2): 90, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692516

RESUMO

Bone marrow-derived allogeneic (donor derived) mesenchymal stem cells (MSCs) are immunoprivileged and are considered to be prominent candidates for regenerative therapy for numerous degenerative diseases. Even though the outcome of initial allogeneic MSCs based clinical trials was encouraging, the overall enthusiasm, of late, has dimmed down. This is due to failure of long-term survival of transplanted cells in the recipient. In fact, recent analyses of allogeneic MSC-based studies demonstrated that cells after transplantation turned immunogenic and were subsequently rejected by host immune system. The current study reveals a novel mechanism of immune switch in MSCs. We demonstrate that hypoxia, a common denominator of ischemic tissues, induces an immune shift in MSCs from immunoprivileged to immunogenic state. The immunoprivilege of MSCs is preserved by downregulation or the absence of major histocompatibility complex class II (MHC-II) molecules. We found that 26S proteasome-mediated intracellular degradation of MHC-II helps maintain the absence of MHC-II expression on cell surface in normoxic MSCs and preserves their immunoprivilege. The exposure to hypoxia leads to dissociation of 19S and 20S subunits, and inactivation of 26S proteasome. This prevented the degradation of MHC-II and, as a result, the MSCs became immunogenic. Furthermore, we found that hypoxia-induced decrease in the levels of a chaperon protein HSP90α is responsible for inactivation of 26S proteasome. Maintaining HSP90α levels in hypoxic MSCs preserved the immunoprivilege of MSCs. Therefore, hypoxia-induced inactivation of 26S proteasome assembly instigates loss of immunoprivilege of allogeneic mesenchymal stem cells. Maintaining 26S proteasome activity in mesenchymal stem cells preserves their immunoprivilege.


Assuntos
Hipóxia Celular/imunologia , Células-Tronco Mesenquimais/imunologia , Complexo de Endopeptidases do Proteassoma/genética , Humanos
4.
Am J Physiol Heart Circ Physiol ; 316(2): H279-H288, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412444

RESUMO

Cardiac fibroblast growth factor 2 (FGF2) exerts multiple paracrine activities related to cardiac response to injury. Endogenous FGF2 is composed of a mixture of 70% high- and 30% low-molecular-weight isoforms (Hi-FGF2 and Lo-FGF2, respectivley); although exogenously added Lo-FGF2 is cardioprotective, the roles of endogenous Hi-FGF2 or Lo-FGF2 have not been well defined. Therefore, we investigated the effect of elimination of Hi-FGF2 expression on susceptibility to acute cardiac damage in vivo caused by an injection of the genotoxic drug doxorubicin (Dox). Mice genetically depleted of endogenous Hi-FGF2 and expressing only Lo-FGF2 [FGF2(Lo) mice] were protected from the Dox-induced decline in ejection fraction displayed by their wild-type FGF2 [FGF2(WT)] mouse counterparts, regardless of sex, as assessed by echocardiography for up to 10 days post-Dox treatment. Because cardiac FGF2 is produced mainly by nonmyocytes, we next addressed potential contribution of fibroblast-produced FGF2 on myocyte vulnerability to Dox. In cocultures of neonatal rat cardiomyocytes (r-cardiomyocytes) with mouse fibroblasts from FGF2(WT) or FGF2(Lo) mice, only the FGF2(Lo)-fibroblast cocultures protected r-cardiomyocytes from Dox-induced mitochondrial and cellular damage. When r-cardiomyocytes were cocultured with or exposed to conditioned medium from human fibroblasts, neutralizing antibodies for human Hi-FGF-2, but not total FGF2, mitigated Dox-induced injury of cardiomyocytes. We conclude that endogenous Hi-FGF2 reduces cardioprotection by endogenous Lo-FGF2. Antibody-based neutralization of endogenous Hi-FGF2 may offer a prophylactic treatment against agents causing acute cardiac damage. NEW & NOTEWORTHY Cardiomyocytes, in vivo and in vitro, were protected from the deleterious effects of the anticancer drug doxorubicin by the genetic elimination or antibody-based neutralization of endogenous paracrine high-molecular-weight fibroblast growth factor 2 isoforms. These findings have a translational potential for mitigating doxorubicin-induced cardiac damage in patients with cancer by an antibody-based treatment.


Assuntos
Doxorrubicina/toxicidade , Fator 2 de Crescimento de Fibroblastos/metabolismo , Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miofibroblastos/metabolismo , Animais , Débito Cardíaco , Cardiotoxicidade , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Coração/fisiologia , Humanos , Masculino , Camundongos , Ratos
5.
Can J Physiol Pharmacol ; 97(6): 536-543, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30422687

RESUMO

Increasing reports of successful and safe application of bone marrow derived mesenchymal stem cells (BM-MSCs) for cell therapy are pouring in from numerous studies. However poor survival of transplanted cells in the recipient has impaired the benefits of BM-MSCs based therapies. Therefore cell product preparation procedures pertaining to MSC therapy need to be optimized to improve the survival of transplanted cells. One of the important ex vivo procedures in the preparation of cells for therapy is passaging of BM-MSCs to ensure a suitable number of cells for transplantation, which may affect the turnover of proteins involved in regulation of cell survival and (or) death pathways. In the current study, we investigated the effect of an increase in passage number of BM-MSCs in cell culture on the intracellular protein turnover (protein synthesis, processing, and degradation machinery). We performed proteomic analysis of BM-MSCs at different passages. There was no significant difference observed in the ribosomal, protein processing, and proteasomal pathways related proteins in BM-MSCs with an increase in passage number from P3 to P7. Therefore, expansion of MSCs in the cell culture in clinically relevant passages (Passage 3-7) does not affect the quality of MSCs in terms of intracellular protein synthesis and turnover.


Assuntos
Células-Tronco Mesenquimais/citologia , Biossíntese de Proteínas , Proteômica , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Retículo Endoplasmático/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Ratos , Ratos Sprague-Dawley , Ribossomos/metabolismo
6.
Stem Cell Res Ther ; 9(1): 121, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720263

RESUMO

BACKGROUND: Bone marrow-derived allogeneic mesenchymal stem cells (MSCs) from young healthy donors are immunoprivileged and their clinical application for regenerative medicine is under evaluation. However, data from preclinical and initial clinical trials indicate that allogeneic MSCs after transplantation provoke a host immune response and are rejected. In the current study, we evaluated the effect of an increase in passage number in cell culture on immunoprivilege of the MSCs. Since only limited numbers of MSCs can be sourced at a time from a donor, it is imperative to expand them in culture to meet the necessary numbers required for cell therapy. Presently, the most commonly used passages for transplantation include passages (P)3-7. Therefore, in this study we included clinically relevant passages, i.e., P3, P5, and P7, for evaluation. METHODS: The immunoprivilege of MSCs was assessed with the mixed leukocyte reaction assay, where rat MSCs were cocultured with peripheral blood leukocytes for 72 h. Leukocyte-mediated cytotoxicity, apoptosis (Bax/Bcl-xl ratio), leukocyte proliferation, and alterations in cellular bioenergetics in MSCs were assessed after the coculture. Furthermore, the expression of various oxidized phospholipids (oxidized phosphatidylcholine (ox-PC)) was analyzed in MSCs using a lipidomic platform. To determine if the ox-PCs were acting in tandem with downstream intracellular protein alterations, we performed proteome analysis using a liquid chromatography/mass spectrometry (LC/MS) proteomic platform. RESULTS: Our data demonstrate that MSCs were immunoprivileged at all three passages since coculture with leukocytes did not affect the survival of MSCs at P3, P5, and P7. We also found that, with an increase in the passage number of MSCs, leukocytes did not cause any significant effect on cellular bioenergetics (basal respiration rate, spare respiratory capacity, maximal respiration, and coupling efficiency). Interestingly, in our omics data, we detected alterations in some of the ox-PCs and proteins in MSCs at different passages; however, these changes were not significant enough to affect their immunoprivilege. CONCLUSIONS: The outcome of this study demonstrates that an increase in passage number (from P3 to P7) in the cell culture does not have any significant effect on the immunoprivilege of MSCs.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Proteômica/métodos , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
7.
Methods Mol Biol ; 1553: 15-23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28229404

RESUMO

Mesenchymal stem cells (MSCs) provide an opportunity to bring the field of regenerative medicine to realization. A lot of clinical trials are presently trying to establish their applicability in real-world scenarios. Some of the biggest challenges encountered in bringing MSCs from bench to bedside are the number of MSCs required, their procurement from various sources, and the batch-to-batch variability. This often leads to inconclusive results within and between different studies. Therefore, we have hereby proposed a simple protocol to source mesenchymal stem cells through differentiation of embryonic stem cells.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Adultas , Animais , Biomarcadores , Técnicas de Cultura de Células , Linhagem Celular , Separação Celular/métodos , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Fibroblastos , Imunofenotipagem/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Medicina Regenerativa
8.
Methods Mol Biol ; 1553: 183-190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28229416

RESUMO

This chapter deals with the employment of human-induced pluripotent stem cells (hiPSCs) as a candidate to differentiate into mesenchymal stem cells (MSCs). This would enable to help establish a regular source of human MSCs with the aim of avoiding the problems associated with procuring the MSCs either from different healthy individuals or patients, limited extraction potentials, batch-to-batch variations or from diverse sources such as bone marrow or adipose tissue. The procedures described herein allow for a guided and ensured approach for the regular maintenance of hiPSCs and their subsequent differentiation into MSCs using the prescribed medium. Subsequently, an easy protocol for the successive isolation and purification of the hiPSC-differentiated MSCs is outlined, which is carried out through passaging and can be further sorted through flow cytometry. Further, the maintenance and expansion of the resultant hiPSC-differentiated MSCs using appropriate characterization techniques, i.e., Reverse-transcription PCR and immunostaining is also elaborated. The course of action has been deliberated keeping in mind the awareness and the requisites available to even beginner researchers who mostly have access to regular consumables and medium components found in the general laboratory.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/citologia , Biomarcadores , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Reprogramação Celular , Humanos , Imunofenotipagem , Microscopia de Fluorescência , Fenótipo , Medicina Regenerativa
9.
Methods Mol Biol ; 1553: 241-248, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28229421

RESUMO

This chapter is based on a simplified method to validate the current preservation procedure of mesenchymal stem cells (MSCs). Currently, there are various media available for freezing and thus preserving the MSCs, making it hard to decide which agent will be apt for cellular requirements. The study describes the effect of two different compositions of freezing media used in regular cell culture experiments, on the morphology, proliferation, and doubling rate of MSCs. Commonly used agents for the cryopreservation of MSCs include DMSO (Dimethyl Sulfoxide) and FBS (Fetal Bovine Serum) and DMEM (Dulbecco's Modified Eagle Medium). To ascertain that the currently used agents do not lead to major changes in the MSC morphology and proliferation, the cells are frozen using the above-mentioned agents in different groups and then their effects analyzed. Thus, the chapter helps to decide what reagents can suit the MSCs, hence minimizing the laboratory to laboratory variability of their characteristics.


Assuntos
Criopreservação/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Separação Celular/métodos , Sobrevivência Celular , Células Cultivadas , Crioprotetores , Camundongos , Ratos
10.
Can J Physiol Pharmacol ; 93(10): 835-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26443930

RESUMO

Cardiac injury and loss of cardiomyocytes is a causative as well as a resultant condition of cardiovascular disorders, which are the leading cause of death throughout the world. This loss of cardiomyocytes cannot be completely addressed through the currently available drugs being administered, which mainly function only in relieving the symptoms. There is a huge potential being investigated for regenerative and cell replacement therapies through recruiting stem cells of various origins namely embryonic, reprogramming/induction, and adult tissue. These sources are being actively studied for translation to clinical scenarios. In this review, we attempt to discuss some of these promising scenarios, including the clinical trials and the obstacles that need to be overcome, and hope to address the direction in which stem cell therapy is heading.


Assuntos
Transplante de Medula Óssea/métodos , Reprogramação Celular , Cardiopatias/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Miócitos Cardíacos/transplante , Transplante de Medula Óssea/efeitos adversos , Cardiopatias/patologia , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências
11.
Stem Cell Res Ther ; 6: 148, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26296856

RESUMO

INTRODUCTION: Doxorubicin (DOX) is a well-known anticancer drug. However its clinical use has been limited due to cardiotoxic effects. One of the major concerns with DOX therapy is its toxicity in patients who are frail, particularly diabetics. Several studies suggest that mesenchymal stem cells (MSCs) have the potential to restore cardiac function after DOX-induced injury. However, limited data are available on the effects of MSC therapy on DOX-induced cardiac dysfunction in diabetics. Our objective was to test the efficacy of bone marrow-derived (BM-MSCs) and adipose-derived MSCs (AT-MSCs) from age-matched humans in a non-immune compromised rat model. METHODS: Diabetes mellitus was induced in rats by streptozotocin injection (STZ, 65 mg/kg b.w, i.p.). Diabetic rats were treated with DOX (doxorubicin hydrochloride, 2.5 mg/kg b.w, i.p) 3 times/wk for 2 weeks (DOX group); or with DOX+ GFP labelled BM-MSCs (2x106cells, i.v.) or with DOX + GFP labelled AT-MSCs (2x106cells, i.v.). Echocardiography and Langendorff perfusion analyses were carried out to determine the heart function. Immunostaining and western blot analysis of the heart tissue was carried out for CD31 and to assess inflammation and fibrosis. Statistical analysis was carried out using SPSS and data are expressed as mean ± SD. RESULTS: Glucose levels in the STZ treated groups were significantly greater than control group. After 4 weeks of intravenous injection, the presence of injected MSCs in the heart was confirmed through fluorescent microscopy and real time PCR for ALU transcripts. Both BM-MSCs and AT-MSCs injection prevented DOX-induced deterioration of %FS, LVDP, dp/dt max and rate pressure product. Staining for CD31 showed a significant increase in the number of capillaries in BM-MSCs and AT-MSCs treated animals in comparison to DOX treated group. Assessment of the inflammation and fibrosis revealed a marked reduction in the DOX-induced increase in immune cell infiltration, collagen deposition and αSMA in the BM-MSCs and AT-MSCs groups. CONCLUSIONS: In conclusion BM-MSCs and AT-MSCs were equally effective in mitigating DOX-induced cardiac damage by promoting angiogenesis, decreasing the infiltration of immune cells and collagen deposition.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Doxorrubicina/toxicidade , Traumatismos Cardíacos/terapia , Coração/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Adulto , Animais , Células Cultivadas , Diabetes Mellitus Experimental , Feminino , Traumatismos Cardíacos/induzido quimicamente , Humanos , Masculino , Ratos , Ratos Wistar
12.
Cardiovasc Res ; 102(3): 497-506, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24623279

RESUMO

AIMS: Long QT syndrome 2 (LQTS2) caused by missense mutations in hERG channel is clinically associated with abnormally prolonged ventricular repolarization and sudden cardiac deaths. Modelling monogenic arrhythmogenic diseases using human-induced pluripotent stem cells (hiPSCs) offers unprecedented mechanistic insights into disease pathogenesis. We utilized LQTS2-hiPSC-derived cardiomyocytes (CMs) to elucidate pathological changes and to demonstrate reversal of LQTS2 phenotype in a therapeutic intervention using a pharmacological agent, (N-[N-(N-acetyl-l-leucyl)-l-leucyl]-l-norleucine) (ALLN). METHODS AND RESULTS: We generated LQTS2-specific CMs (A561V missense mutation in KCNH2) from iPSCs using the virus-free reprogramming method. These CMs recapitulate dysfunction of hERG potassium channel with diminished IKr currents, prolonged repolarization durations, and elevated arrhythmogenesis due to reduced membrane localization of glycosylated/mature hERG. Dysregulated expression of folding chaperones and processing proteasomes coupled with sequestered hERG in the endoplasmic reticulum confirmed trafficking-induced disease manifestation. Treatment with ALLN, not only increased membrane localization of mature hERG but also reduced repolarization, increased IKr currents and reduced arrhythmogenic events. Diverged from biophysical interference of hERG channel, our results show that modulation of chaperone proteins could be therapeutic in LQTS2 treatment. CONCLUSION: Our in vitro study shows an alternative approach to rescue diseased LQTS2 phenotype via corrective re-trafficking therapy using a small chemical molecule, such as ALLN. This potentially novel approach may have ramifications in other clinically relevant trafficking disorders.


Assuntos
Canais de Potássio Éter-A-Go-Go/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Leupeptinas/uso terapêutico , Síndrome do QT Longo/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Animais , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Síndrome do QT Longo/fisiopatologia , Masculino , Camundongos , Mutação , Fenótipo , Transporte Proteico
13.
Life Sci ; 92(1): 63-71, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23142239

RESUMO

AIM: Reprogramming of somatic cells utilizing viral free methods provide a remarkable method to generate human induced pluripotent stem cells (hiPSCs) for regenerative medicine. In this study, we evaluate developmental ontogeny of cardiomyocytes following induced differentiation of hiPSCs. MAIN METHODS: Fibroblasts were reprogrammed with episomal vectors to generate hiPSC and were subsequently differentiated to cardiomyocytes. Ontogenic development of cardiomyocytes was studied by real-time PCR. KEY FINDINGS: Human iPSCs derived from episomal based vectors maintain classical pluripotency markers, generate teratomas and spontaneously differentiate into three germ layers in vitro. Cardiomyogenic induction of these hiPSCs efficiently generated cardiomyocytes. Ontogenic gene expression studies demonstrated that differentiation of cardiomyocytes was initiated by increased expression of mesodermal markers, followed by early cardiac committed markers, structural and ion channel genes. Furthermore, our correlation analysis of gene expression studies with human heart demonstrated that pivotal structural genes like cardiac troponin, actinin, myosin light chain maintained a high correlation with ion channel genes indicating coordinated activation of cardiac transcriptional machinery. Finally, microelectrode recordings show that these cardiomyocytes could respond aptly to pharmacologically active drugs. Cardiomyocytes showed a chronotropic response to isoproterenol, reduced Na(+) influx with quinidine, prolongation of beating rate corrected field potential duration (cFPD) with E-4031 and reduced beating frequency and shortened cFPD with verapamil. SIGNIFICANCE: Our study shows that viral free hiPSCs efficiently differentiate into cardiomyocytes with cardiac-specific molecular, structural, and functional properties that recapitulate developmental ontogeny of cardiogenesis. These results, coupled with the potential to generate patient-specific hiPSC lines hold great promise for the development of in vitro platform for drug pharmacogenomics; disease modeling and regenerative medicine.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Isoproterenol/farmacologia , Camundongos , Camundongos SCID , Microeletrodos , Miócitos Cardíacos/efeitos dos fármacos , Quinidina/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Sódio/metabolismo , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA