RESUMO
4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity. The polyfluoroalkyl residue in 4-AHPs led to the appearance of an anticarboxylesterase action in the micromolar range. An NH-fragment and/or methyl group instead of the polyfluoroalkyl one in the 4-AHPs promoted antioxidant properties in the ABTS, FRAP and ORAC tests, as well as anti-cancer activity against HeLa that was at the Doxorubicin level coupled with lower cytotoxicity against normal human fibroblasts. Some Ph-N-substituted 4-AHPs could inhibit the growth of N. gonorrhoeae bacteria at MIC 0.9 µg/mL. The possibility of using 4-AHPs for cell visualization was shown. Most of the 4-AHPs exhibited a pronounced analgesic effect in a hot plate test in vivo at and above the diclofenac and metamizole levels except for the ones with two chlorine atoms in the aryl group. The methylsulfonyl residue was proved to raise the anti-inflammatory effect also. A mechanism of the antinociceptive action of the 4-AHPs through blocking the TRPV1 receptor was proposed and confirmed using in vitro experiment and molecular docking.
Assuntos
Antioxidantes , Diclofenaco , Humanos , Simulação de Acoplamento Molecular , Antioxidantes/química , Preparações FarmacêuticasRESUMO
Cholines acylated with unsaturated fatty acids are a recently discovered family of endogenous lipids. However, the data on the biological activity of acylcholines remain very limited. We hypothesized that acylcholines containing residues of arachidonic (AA-CHOL), oleic (Ol-CHOL), linoleic (Ln-CHOL), and docosahexaenoic (DHA-CHOL) acids act as modulators of the acetylcholine signaling system. In the radioligand binding assay, acylcholines showed inhibition in the micromolar range of both α7 neuronal nAChR overexpressed in GH4C1 cells and muscle type nAChR from Torpedo californica, as well as Lymnaea stagnalis acetylcholine binding protein. Functional response was checked in two cell lines endogenously expressing α7 nAChR. In SH-SY5Y cells, these compounds did not induce Ca2+ rise, but inhibited the acetylcholine-evoked Ca2+ rise with IC50 9 to 12 µM. In the A549 lung cancer cells, where α7 nAChR activation stimulates proliferation, Ol-CHOL, Ln-CHOL, and AA-CHOL dose-dependently decreased cell viability by up to 45%. AA-CHOL inhibited human erythrocyte acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BChE) by a mixed type mechanism with Ki = 16.7 ± 1.5 µM and αKi = 51.4 ± 4.1 µM for AChE and Ki = 70.5 ± 6.3 µM and αKi = 214 ± 17 µM for BChE, being a weak substrate of the last enzyme only, agrees with molecular docking results. Thus, long-chain unsaturated acylcholines could be viewed as endogenous modulators of the acetylcholine signaling system.
Assuntos
Acetilcolina/farmacologia , Ácidos Araquidônicos/farmacologia , Colina/farmacologia , Inibidores da Colinesterase/farmacologia , Células A549 , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Butirilcolinesterase/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colina/metabolismo , Eritrócitos/enzimologia , Feminino , Cavalos , Humanos , Concentração Inibidora 50 , Cinética , Lymnaea/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Ligação Proteica , Transdução de Sinais , Torpedo/metabolismo , XenopusRESUMO
A modification of novel fluorinated organophosphorous compounds containing terminal alkyne group by different azidopeptides via Cu(I)-catalyzed click chemistry has been described. The inhibitor activity of trifluoromethyl-containing methylphosphonates and their peptide-conjugates towards acetylcholinesterase, butyrylcholinesterase, and carboxylesterase has been investigated. It was shown that the incorporation of peptide fragments significantly modulates the esterase profile of starting methylphosphonates.