Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(25): 5102-5114, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35606145

RESUMO

Increasing loss of structure and function of neurons and decline in cognitive function is commonly seen during the progression of neurologic diseases, although the causes and initial symptoms of individual diseases are distinct. This observation suggests a convergence of common degenerative features. In myotonic dystrophy type 1 (DM1), the expression of expanded CUG RNA induces neurotransmission dysfunction before axon and dendrite degeneration and reduced MBNL2 expression associated with aberrant alternative splicing. The role of loss of function of MBNL2 in the pathogenesis of neurodegeneration and the causal mechanism of neurodegeneration-reduced expression of MBNL2 remain elusive. Here, we show that increased MBNL2 expression is associated with neuronal maturation and required for neuronal morphogenesis and the fetal to adult developmental transition of RNA processing. Neurodegenerative conditions including NMDA receptor (NMDAR)-mediated excitotoxicity and dysregulated calcium homeostasis triggered nuclear translocation of calpain-2, thus resulting in MBNL2 degradation and reversal of MBNL2-regulated RNA processing to developmental patterns. Nuclear expression of calpain-2 resembled its developmental pattern and was associated with MBNL2 degradation. Knock-down of calpain-2 expression or inhibition of calpain-2 nuclear translocation prevented neurodegeneration-reduced MBNL2 expression and dysregulated RNA processing. Increased calpain-2 nuclear translocation associated with reduced MBNL2 expression and aberrant RNA processing occurred in models for DM1 and Alzheimer's disease (AD) including EpA960/CaMKII-Cre mice of either sex and female APP/PS1 and THY-Tau22 mice. Our results identify a regulatory mechanism for MBNL2 downregulation and suggest that calpain-2-mediated MBNL2 degradation accompanied by re-induction of a developmental RNA processing program may be a converging pathway to neurodegeneration.SIGNIFICANCE STATEMENT Neurologic diseases share many features during disease progression, such as cognitive decline and brain atrophy, which suggests a common pathway for developing degenerative features. Here, we show that the neurodegenerative conditions glutamate-induced excitotoxicity and dysregulated calcium homeostasis induced translocation of the cysteine protease calpain-2 into the nucleus, resulting in MBNL2 degradation and reversal of MBNL2-regulated RNA processing to an embryonic pattern. Knock-down or inhibition of nuclear translocation of calpain-2 prevented MBNL2 degradation and maintained MBNL2-regulated RNA processing in the adult pattern. Models of myotonic dystrophy and Alzheimer's disease (AD) also showed calpain-2-mediated MBNL2 degradation and a developmental RNA processing program. Our studies suggest MBNL2 function disrupted by calpain-2 as a common pathway, thus providing an alternative therapeutic strategy for neurodegeneration.


Assuntos
Doença de Alzheimer , Calpaína/metabolismo , Distrofia Miotônica , Processamento Alternativo , Animais , Cálcio/metabolismo , Feminino , Camundongos , Distrofia Miotônica/genética , Distrofia Miotônica/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Nat Biomed Eng ; 6(2): 207-220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145256

RESUMO

Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.


Assuntos
Distrofia Miotônica , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Humanos , Camundongos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/terapia , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Reprod Fertil ; 2(4): 268-279, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35118404

RESUMO

ProAKAP4 is synthetized as a precursor polypeptide that must be converted into mature AKAP4 in living spermatozoa and is considered as a functional marker of spermatozoa. The gene is well-conserved in mammals although uncharacterized in Camelidae. In the present study, we investigate the expression metabolism of proAKAP4 and AKAP4 proteins and evaluate their seasonal dynamics relative to semen quality in dromedary camels. Semen parameters including volume and viscosity and characteristics of sperm including concentration, total production, total and progressive motility, vitality, acrosome integrity and morphological abnormalities were assessed in semen samples collected weekly from six camels during the rutting season, from November to April. Only total sperm production varied, peaking in January. Both the precursor proAKAP4 and AKAP4 proteins were investigated and shown to express biochemical properties similar to those described in other mammals. ProAKAP4 concentrations expressed in ng/10 million spermatozoa as assayed using a specific ELISA showed a strong positive correlation with ejaculate volume (P = 0.045), viscosity (P < 0.001) and sperm total motility (P = 0.049). Furthermore, their concentrations exhibited clear seasonal variations in camel semen. In conclusion, the assessment of proAKAP4 concentrations in camel sperm provides a novel parameter to assess sperm quality. Further studies should be performed to investigate proAKAP4 concentrations relative to fertility in Camelidae that may help to define the right time for mating and semen collection and increase the success of breeding programs. LAY SUMMARY: Breeding related to the seasons/time of year in the camel has been reported in several studies. A better knowledge of semen quality during the breeding season would assist in determining the best period for mating in camels. However, conventional sperm parameters are held to be unsatisfactory because they cannot predict breeding potential. ProAKAP4 a sperm-specific protein has been described as a functional marker of sperm and a key fertility marker in several species but has not been described in camels. Motility or membrane integrity parameters of semen collected throughout the breeding season and also the presence of proAKAP4 protein were investigated. ProAKAP4 was identified for the first time in camels and their concentrations exhibited clear seasonal variations in camel semen showing strong correlations with ejaculate volume and total motility and viscosity. Further studies should be performed to investigate proAKAP4 concentrations relative to fertility in camels to define the right time for mating and increase the success of breeding programs.


Assuntos
Camelus , Sêmen , Animais , Masculino , Análise do Sêmen , Motilidade dos Espermatozoides , Espermatozoides
4.
Eur J Med Chem ; 159: 104-125, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30268822

RESUMO

Dysregulation of the Amyloid Precursor Protein (APP) processing leading to toxic species of amyloid ß peptides (Aß) is central to Alzheimer's disease (AD) etiology. Aß peptides are produced by sequential cleavage of APP by ß-secretase (BACE-1) and γ-secretase. Lysosomotropic agent, chloroquine (CQ), has been reported to inhibit Aß peptide production. However, this effect is accompanied by an inhibition of lysosome-mediated degradation pathways. Following on from the promising activity of two series of APP metabolism modulators derived from CQ, we sought to develop new series of compounds that would retain the inhibitory effects on Aß production without altering lysosome functions. Herein, we applied a ligand-based pharmacophore modeling approach coupled with de novo design that led to the discovery of a series of biaryl compounds. Structure-activity relationship studies revealed that minor modifications like replacing a piperidine moiety of compound 30 by a cyclohexyl (compound 31) allowed for the identification of compounds with the desired profile. Further studies have demonstrated that compounds 30 and 31 act through an indirect mechanism to inhibit ß-secretase activity. This work shows that it is possible to dissociate the inhibitory effect on Aß peptide secretion of CQ-derived compounds from the lysosome-mediated degradation effect, providing a new profile of indirect ß-secretase inhibitors.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Descoberta de Drogas , Inibidores de Proteases/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fenótipo , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Front Mol Neurosci ; 11: 235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050407

RESUMO

Consumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer's disease (AD) and mitigates both amyloid and Tau lesions in transgenic mouse models of the disease. While short-term treatment with A2AR antagonists have been shown to alleviate cognitive deficits in mouse models of amyloidogenesis, impact of a chronic and long-term treatment on the development of amyloid burden, associated neuroinflammation and memory deficits has never been assessed. In the present study, we have evaluated the effect of a 6-month treatment of APPsw/PS1dE9 mice with the potent and selective A2AR antagonist MSX-3 from 3 to 9-10 months of age. At completion of the treatment, we found that the MSX-3 treatment prevented the development of memory deficits in APP/PS1dE9 mice, without significantly altering hippocampal and cortical gene expressions. Interestingly, MSX-3 treatment led to a significant decrease of Aß1-42 levels in the cortex of APP/PS1dE9 animals, while Aß1-40 increased, thereby strongly affecting the Aß1-42/Aß1-40 ratio. Together, these data support the idea that A2AR blockade is of therapeutic value for AD.

6.
Bioorg Med Chem ; 26(8): 2151-2164, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29559198

RESUMO

The chloroquinoline scaffold is characteristic of anti-malarial drugs such as chloroquine (CQ) or amodiaquine (AQ). These drugs are also described for their potential effectiveness against prion disease, HCV, EBV, Ebola virus, cancer, Parkinson or Alzheimer diseases. Amyloid precursor protein (APP) metabolism is deregulated in Alzheimer's disease. Indeed, CQ modifies amyloid precursor protein (APP) metabolism by precluding the release of amyloid-beta peptides (Aß), which accumulate in the brain of Alzheimer patients to form the so-called amyloid plaques. We showed that AQ and analogs have similar effects although having a higher cytotoxicity. Herein, two new series of compounds were synthesized by replacing 7-chloroquinolin-4-amine moiety of AQ by 2-aminomethylaniline and 2-aminomethylphenyle moieties. Their structure activity relationship was based on their ability to modulate APP metabolism, Aß release, and their cytotoxicity similarly to CQ. Two compounds 15a, 16a showed interesting and potent effect on the redirection of APP metabolism toward a decrease of Aß peptide release (in the same range compared to AQ), and a 3-10-fold increased stability of APP carboxy terminal fragments (CTFα and AICD) without obvious cellular toxicity at 100 µM.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Compostos de Anilina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amodiaquina/química , Amodiaquina/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/química , Cloroquina/metabolismo , Humanos , Ligação Proteica , Relação Estrutura-Atividade
7.
Biol Psychiatry ; 83(5): 416-427, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587718

RESUMO

BACKGROUND: Mitophagy and mitochondrial dynamics alterations are two major hallmarks of neurodegenerative diseases. Dysfunctional mitochondria accumulate in Alzheimer's disease-affected brains by yet unexplained mechanisms. METHODS: We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which presenilins control phosphatase and tensin homolog-induced kinase 1 (Pink-1) expression and transcription. In vivo approaches were carried out on various transgenic and knockout animals as well as in adeno-associated virus-infected mice. Functional readout and mitochondrial physiology (mitochondrial potential) were assessed by combined procedures including flow cytometry, live imaging analysis, and immunohistochemistry. RESULTS: We show that presenilins 1 and 2 trigger opposite effects on promoter transactivation, messenger RNA, and protein expression of Pink-1. This control is linked to γ-secretase activity and ß-amyloid precursor protein but is independent of phosphatase and tensin homolog. We show that amyloid precursor protein intracellular domain (AICD) accounts for presenilin-dependent phenotype and upregulates Pink-1 transactivation in cells as well as in vivo in a Forkhead box O3a-dependent manner. Interestingly, the modulation of γ-secretase activity or AICD expression affects Pink-1-related control of mitophagy and mitochondrial dynamics. Finally, we show that parkin acts upstream of presenilins to control Pink-1 promoter transactivation and protein expression. CONCLUSIONS: Overall, we delineate a molecular cascade presenilins-AICD-Forkhead box O3a linking parkin to Pink-1. Our study demonstrates AICD-mediated Pink-1-dependent control of mitochondrial physiology by presenilins. Furthermore, it unravels a parkin-Pink-1 feedback loop controlling mitochondrial physiology that could be disrupted in neurodegenerative conditions.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Forkhead Box O3/metabolismo , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Presenilinas/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Embrião de Mamíferos , Fibroblastos , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
J Proteome Res ; 15(2): 667-76, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26742856

RESUMO

Tau protein plays a major role in neurodegenerative disorders, appears to be a central biomarker of neuronal injury in cerebrospinal fluid (CSF), and is a promising target for Alzheimer's disease immunotherapies. To quantify tau at high sensitivity and gain insights into its naturally occurring structural variations in human CSF, we coupled absolute quantification using protein standard with the multiplex detection capability of targeted high-resolution mass spectrometry (MS) on a Quadrupole-Orbitrap instrument. Using recombinant tau we developed a step-by-step workflow optimization including an extraction protocol that avoided affinity reagents and achieved the monitoring of 22 tau peptides uniformly distributed along the tau sequence. The lower limits of quantification ranged (LLOQ) from 150 to 1500 pg/mL depending on the peptide. Applied to endogenous CSF tau, up to 19 peptides were detected. Interestingly, there were significant differences in the abundance of peptides depending on their position in the sequence, with peptides from the tau mid-domain appearing significantly more abundant than peptides from the N- and C-terminus domains. This MS-based strategy provided results complementary to those of previous ELISA or Western Blot studies of CSF tau and could be applied to tau monitoring in human CSF cohorts.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Sequência de Aminoácidos , Biomarcadores/líquido cefalorraquidiano , Cromatografia Líquida , Humanos , Dados de Sequência Molecular , Peptídeos/química , Reprodutibilidade dos Testes , Proteínas tau/química
9.
Mol Neurodegener ; 10: 28, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26170022

RESUMO

The number of known pathologies involving deregulated Tau expression/metabolism is increasing. Indeed, in addition to tauopathies, which comprise approximately 30 diseases characterized by neuronal aggregation of hyperphosphorylated Tau in brain neurons, this protein has also been associated with various other pathologies such as cancer, inclusion body myositis, and microdeletion/microduplication syndromes, suggesting its possible function in peripheral tissues. In addition to Tau aggregation, Tau deregulation can occur at the expression and/or splicing levels, as has been clearly demonstrated in some of these pathologies. Here, we aim to review current knowledge regarding the regulation of human MAPT gene expression at the DNA and RNA levels to provide a better understanding of its possible deregulation. Several aspects, including repeated motifs, CpG island/methylation, and haplotypes at the DNA level, as well as the key regions involved in mRNA expression and stability and the splicing patterns of different mRNA isoforms at the RNA level, will be discussed.


Assuntos
Regulação da Expressão Gênica , Proteínas tau/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Ilhas de CpG , DNA/genética , Metilação de DNA , Elementos de DNA Transponíveis , Feto/metabolismo , Haplótipos , Humanos , Repetições de Microssatélites , Neurônios/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Nucleico , Tauopatias/genética , Tauopatias/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Proteínas tau/biossíntese
10.
ACS Chem Neurosci ; 6(4): 559-69, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25611616

RESUMO

The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD). Preventing deregulated APP processing by inhibiting amyloidogenic processing of carboxy-terminal fragments (APP-CTFs), and reducing the toxic effect of amyloid beta (Aß) peptides remain an effective therapeutic strategy. We report the design of piperazine-containing compounds derived from chloroquine structure and evaluation of their effects on APP metabolism and ability to modulate the processing of APP-CTF and the production of Aß peptide. Compounds which retained alkaline properties and high affinity for acidic cell compartments were the most effective. The present study demonstrates that (1) the amino side chain of chloroquine can be efficiently substituted by a bis(alkylamino)piperazine chain, (2) the quinoline nucleus can be replaced by a benzyl or a benzimidazole moiety, and (3) pharmacomodulation of the chemical structure allows the redirection of APP metabolism toward a decrease of Aß peptide release, and increased stability of APP-CTFs and amyloid intracellular fragment. Moreover, the benzimidazole compound 29 increases APP-CTFs in vivo and shows promising activity by the oral route. Together, this family of compounds retains a lysosomotropic activity which inhibits lysosome-related Aß production, and is likely to be beneficial for therapeutic applications in AD.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Cloroquina/análogos & derivados , Fármacos Neuroprotetores/química , Quinolinas/química , Peptídeos beta-Amiloides/metabolismo , Animais , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cloroquina/química , Cloroquina/farmacologia , Desenho de Fármacos , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Quinolinas/farmacologia , Água/química
11.
Proteome Sci ; 12: 24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24944524

RESUMO

BACKGROUND: Lipid lowering agent such as agonists of peroxisome proliferator-activated receptors (PPAR) are suggested as neuroprotective agents and may protect from the sequelae of brain ischemic stroke. Although the demonstration is not clearly established in human, the underlying molecular mechanism may be of interest for future therapeutic purposes. To this end, we have used our well established rodent model of ischemia-reperfusion pre-treated or not with fenofibrate or atorvastatin and performed a differential proteomics analyses of the brain and analysed the protein markers which levels returned to "normal" following pre-treatments with PPARα agonists. RESULTS: In order to identify potential therapeutic targets positively modulated by pre-treatment with the PPARα agonists, two-dimensional gel electrophoresis proteome profiles between control, ischemia-reperfusion and pre-treated or not, were compared. The polypeptide which expression was altered following ischemia - reperfusion but whose levels remain unchanged after pre-treatment were characterized by mass spectrometry and further investigated by Western-blotting and immunohistochemistry. A series of 28 polypeptides were characterized among which the protein disulfide isomerase reduction - a protein instrumental to the unfolded protein response system - was shown to be reduced following PPARα agonists treatment while it was strongly increased in ischemia-reperfusion. CONCLUSIONS: Pre-treatment with PPARα agonist or atorvastatin show potential neuroprotective effects by inhibiting the PDI overexpression in conjunction with the preservation of other neuronal markers, several of which are associated with the regulation of protein homeostasis, signal transduction and maintenance of synaptic plasticity. This proteomic study therefore suggests that neuroprotective effect of PPARα agonists supposes the preservation of the expression of several proteins essential for the maintenance of protein homeostasis not necessarily directly linked to PPARα known-regulated targets.

12.
Oncotarget ; 5(3): 754-63, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24504508

RESUMO

MUC1 is a membrane-anchored mucin and its cytoplasmic tail (CT) can interact with many signaling pathways and act as a co-transcription factor to activate genes involved in tumor progression and metastasis. MUC1 is overexpressed in renal cell carcinoma with correlation to prognosis and has been implicated in the hypoxic pathway, the main renal carcinogenetic pathway. In this context, we assessed the effects of MUC1 overexpression on renal cancer cells properties. Using shRNA strategy and/or different MUC1 constructs, we found that MUC1-extracellular domain and MUC1-CT are involved in increase of migration, cell viability, resistance to anoikis and in decrease of cell aggregation in cancer cells. Invasiveness depends only on MUC1-CT. Then, by using siRNA strategy and/or pharmacological inhibitors or peptides, we showed that sheddases ADAM10, ADAM17 and gamma-secretase are necessary for MUC1 C-terminal subunit (MUC1-C) nuclear location and in increase of invasion property. Finally, MUC1 overexpression increases ADAM10/17 protein expression suggesting a positive regulatory loop. In conclusion, we report that MUC1 acts in renal cancer progression and MUC1-C nuclear localization drives invasiveness of cancer cells through a sheddase/gamma secretase dependent pathway. MUC1 appears as a therapeutic target by blocking MUC1 cleavage or nuclear translocation by using pharmacological approach and peptide strategies.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Neoplasias Renais/metabolismo , Mucina-1/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Progressão da Doença , Xenoenxertos , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos , Camundongos SCID , Mucina-1/genética , Subunidades Proteicas , Transdução de Sinais , Transfecção
13.
Neurobiol Aging ; 34(3): 757-69, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22926167

RESUMO

A prerequisite to dephosphorylation at Ser-Pro or Thr-Pro motifs is the isomerization of the imidic peptide bond preceding the proline. The peptidyl-prolyl cis/trans isomerase named Pin1 catalyzes this mechanism. Through isomerization, Pin1 regulates the function of a growing number of targets including the microtubule-associated tau protein and is supposed to be deregulated Alzheimer's disease (AD). Using proteomics, we showed that Pin1 is posttranslationally modified on more than 5 residues, comprising phosphorylation, N-acetylation, and oxidation. Although Pin1 expression remained constant, Pin1 posttranslational two-dimensional pattern was modified by tau overexpression in a tau-inducible neuroblastoma cell line, in our THY-Tau22 mouse model of tauopathy as well as in AD. Interestingly, in all of these systems, Pin1 modifications were very similar. In AD brain tissue when compared with control, Pin1 is hyperphosphorylated at serine 16 and found in the most insoluble hyperphosphorylated tau fraction of AD brain tissue. Furthermore, in all tau pathology conditions, acetylation of Pin1 may also contribute to the differences observed. In conclusion, Pin1 displays several posttranslational modifications, which are specific in tauopathies and may be useful as biomarker.


Assuntos
Encéfalo/metabolismo , Peptidilprolil Isomerase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Peptidilprolil Isomerase de Interação com NIMA , Oxirredução , Fosforilação/fisiologia , Prolina/metabolismo , Proteoma , Serina/metabolismo
14.
Curr Alzheimer Res ; 9(4): 397-405, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22272619

RESUMO

Recent data indicate that Tau immunotherapy may be relevant for interfering with neurofibrillary degeneration in Alzheimer disease and related disorders referred to as Tauopathies. The key question for immunotherapy is the choice of the epitope to target. Abnormal phosphorylation is a well-described post-translational modification of Tau proteins and may be a good target. In the present study, we investigated the effects of active immunization against the pathological epitope phospho-Ser422 in the THY-Tau22 transgenic mouse model. Starting from 3-6 months of age, THY-Tau22 mice develop hippocampal neurofibrillary tangle-like inclusions and exhibit phosphorylation of Tau on several AD-relevant Tau epitopes. Three month-old THY-Tau22 mice were immunized with a peptide including the phosphoserine 422 residue while control mice received the adjuvant alone. A specific antibody response against the phospho-Ser422 epitope was observed. We noticed a decrease in insoluble Tau species (AT100- and pS422 immunoreactive) by both biochemical and immunohistochemical means correlated with a significant cognitive improvement using the Y-maze. This Tau immunotherapy may facilitate Tau clearance from the brain toward the periphery since, following immunization, an increase in Tau concentrations was observed in blood. Overall, the present work is, to our knowledge, the first one to demonstrate that active immunotherapy targeting a real pathological epitope such as phospho-Ser422 epitope is efficient. This immunotherapy allows for Tau clearance and improves cognitive deficits promoted by Tau pathology in a well-defined Tau transgenic model.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Imunoterapia Ativa/métodos , Mutação/genética , Serina/metabolismo , Proteínas tau/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Anticorpos/sangue , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/administração & dosagem , Peptídeos/imunologia , Fosforilação/imunologia , Serina/genética , Proteínas tau/genética
15.
Hum Mol Genet ; 20(20): 4016-24, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807765

RESUMO

Tauopathies represent a large class of neurological and movement disorders characterized by abnormal intracellular deposits of the microtubule-associated protein tau. It is now well established that mis-splicing of tau exon 10, causing an imbalance between three-repeat (3R) and four-repeat (4R) tau isoforms, can cause disease; however, the underlying mechanisms affecting tau splicing in neurons remain poorly understood. The small noncoding microRNAs (miRNAs), known for their critical role in posttranscriptional gene expression regulation, are increasingly acknowledged as important regulators of alternative splicing. Here, we identified a number of brain miRNAs, including miR-124, miR-9, miR-132 and miR-137, which regulate 4R:3R-tau ratios in neuronal cells. Analysis of miRNA expression profiles from sporadic progressive supranuclear palsy (PSP) patients, a major 4R-tau tauopathy, showed that miR-132 is specifically down-regulated in disease. We demonstrate that miR-132 directly targets the neuronal splicing factor polypyrimidine tract-binding protein 2 (PTBP2), which protein levels were increased in PSP patients. miR-132 overexpression or PTBP2 knockdown similarly affected endogenous 4R:3R-tau ratios in neuronal cells. Finally, we provide evidence that miR-132 is inversely correlated with PTBP2 during post-natal brain development at the time when 4R-tau becomes expressed. Taken together, these results suggest that changes in the miR-132/PTBP2 pathway could contribute to the abnormal splicing of tau exon 10 in the brain, and sheds light into the potential role played by miRNAs in a subset of tauopathies.


Assuntos
Processamento Alternativo/genética , Éxons , MicroRNAs/metabolismo , Paralisia Supranuclear Progressiva/genética , Proteínas tau/genética , Idoso , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismo
16.
Nat Med ; 17(6): 720-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21623381

RESUMO

Myotonic dystrophy is the most common muscular dystrophy in adults and the first recognized example of an RNA-mediated disease. Congenital myotonic dystrophy (CDM1) and myotonic dystrophy of type 1 (DM1) or of type 2 (DM2) are caused by the expression of mutant RNAs containing expanded CUG or CCUG repeats, respectively. These mutant RNAs sequester the splicing regulator Muscleblind-like-1 (MBNL1), resulting in specific misregulation of the alternative splicing of other pre-mRNAs. We found that alternative splicing of the bridging integrator-1 (BIN1) pre-mRNA is altered in skeletal muscle samples of people with CDM1, DM1 and DM2. BIN1 is involved in tubular invaginations of membranes and is required for the biogenesis of muscle T tubules, which are specialized skeletal muscle membrane structures essential for excitation-contraction coupling. Mutations in the BIN1 gene cause centronuclear myopathy, which shares some histopathological features with myotonic dystrophy. We found that MBNL1 binds the BIN1 pre-mRNA and regulates its alternative splicing. BIN1 missplicing results in expression of an inactive form of BIN1 lacking phosphatidylinositol 5-phosphate-binding and membrane-tubulating activities. Consistent with a defect of BIN1, muscle T tubules are altered in people with myotonic dystrophy, and membrane structures are restored upon expression of the normal splicing form of BIN1 in muscle cells of such individuals. Finally, reproducing BIN1 splicing alteration in mice is sufficient to promote T tubule alterations and muscle weakness, a predominant feature of myotonic dystrophy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Debilidade Muscular/genética , Distrofia Miotônica/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Linhagem Celular , Éxons/genética , Humanos , Camundongos , Debilidade Muscular/fisiopatologia , Distrofia Miotônica/fisiopatologia , Proteínas Nucleares/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas Supressoras de Tumor/fisiologia
17.
PLoS One ; 4(3): e4843, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19290042

RESUMO

The role of Tau phosphorylation in neurofibrillary degeneration linked to Alzheimer's disease remains to be established. While transgenic mice based on FTDP-17 Tau mutations recapitulate hallmarks of neurofibrillary degeneration, cell models could be helpful for exploratory studies on molecular mechanisms underlying Tau pathology. Here, "human neuronal cell lines" overexpressing Wild Type or mutated Tau were established. Two-dimensional electrophoresis highlights that mutated Tau displayed a specific phosphorylation pattern, which occurs in parallel to the formation of Tau clusters as visualized by electron microscopy. In fact, this pattern is also displayed before Tau pathology onset in a well established mouse model relevant to Tau aggregation in Alzheimer's disease. This study suggests first that pathological Tau mutations may change the distribution of phosphate groups. Secondly, it is possible that this molecular event could be one of the first Tau modifications in the neurofibrillary degenerative process, as this phenomenon appears prior to Tau pathology in an in vivo model and is linked to early steps of Tau nucleation in Tau mutants cell lines. Such cell lines consist in suitable and evolving models to investigate additional factors involved in molecular pathways leading to whole Tau aggregation.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Mutação , Proteínas tau/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Fosforilação , Conformação Proteica , Proteínas tau/química , Proteínas tau/genética
18.
FEBS Lett ; 583(4): 675-9, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19166838

RESUMO

Among the different mechanisms underlying the etiopathogenesis of myotonic dystrophy type 1 (DM1), a backward reprogramming to a foetal splicing machinery is an interesting hypothesis. To address this possibility, Tau splicing, which is regulated during development and modified in DM1, was analyzed. Indeed, a preferential expression of the foetal Tau isoform, instead of the six normally found, is observed in adult DM1 brains. By using two cell lines, we show here that the cis-regulating elements necessary to generate the unique foetal Tau isoform are dispensable to reproduce the trans-dominant effect induced by DM1 mutation on Tau exon 2 inclusion. Our results suggest that the mis-splicing of Tau in DM1 is resulting from a disease-associated mechanism.


Assuntos
Processamento Alternativo , Feto/metabolismo , Distrofia Miotônica , Proteínas tau/metabolismo , Regiões 3' não Traduzidas , Adulto , Linhagem Celular Tumoral , Éxons , Feto/patologia , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Plasmídeos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transfecção , Proteínas tau/genética
19.
Proc Natl Acad Sci U S A ; 104(19): 8167-72, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17470798

RESUMO

The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid-beta protein (Abeta), which forms amyloid plaques in Alzheimer's disease (AD), secreted APPalpha (sAPPalpha) which enhances memory, and the APP intracellular domain (AICD), which has been implicated in the regulation of gene transcription and calcium signaling. The beta-site APP cleaving enzyme 1 (BACE1) cleaves APP in an activity-dependent manner to form Abeta, AICD, and secreted APPbeta. Because this neural activity was shown to diminish synaptic transmission in vitro [Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) Neuron 37:925-937], the prevailing notion has been that this pathway diminishes synaptic function. Here we investigated the role of this pathway in vivo. We studied transgenic mice overproducing APP that do not develop AD pathology or memory deficits but instead exhibit enhanced spatial memory. We showed enhanced synaptic plasticity in the hippocampus that depends on prior synaptic activity. We found that the enhanced memory and synaptic plasticity are abolished by the ablation of one or both copies of the BACE1 gene, leading to a significant decrease in AICD but not of any other APP cleavage products. In contrast to the previously described negative effect of BACE1-mediated cleavage of APP on synaptic function in vitro, our in vivo work indicates that BACE1-mediated cleavage of APP can facilitate learning, memory, and synaptic plasticity.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Precursor de Proteína beta-Amiloide/fisiologia , Ácido Aspártico Endopeptidases/fisiologia , Memória , Plasticidade Neuronal , Sinapses/fisiologia , Precursor de Proteína beta-Amiloide/química , Animais , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
J Biol Chem ; 282(25): 18197-18205, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17468104

RESUMO

Amyloid precursor protein (APP) metabolism is central to the pathogenesis of Alzheimer disease. We showed recently that the amyloid intracellular domain (AICD), which is released by gamma-secretase cleavage of APP C-terminal fragments (CTFs), is strongly increased in cells treated with alkalizing drugs (Vingtdeux, V., Hamdane, M., Bégard, S., Loyens, A., Delacourte, A., Beauvillain, J.-C., Buée, L., Marambaud, P., and Sergeant, N. (2007) Neurobiol. Dis. 25, 686-696). Herein, we aimed to determine the cell compartment in which AICD accumulates. We show that APP-CTFs and AICD are present in multivesicular structures. Multivesicular bodies contain intraluminal vesicles (known as exosomes) when released in the extracellular space. We demonstrate that APP, APP-CTFs, and AICD are integrated and secreted within exosomes in differentiated neuroblastoma and primary neuronal culture cells. Together with recent data showing that amyloid-beta is also found in exosomes, our data show that multivesicular bodies are essential organelles for APP metabolism and that all APP metabolites can be secreted in the extracellular space.


Assuntos
Amiloide/metabolismo , Inibidores Enzimáticos/farmacologia , Animais , Encéfalo/embriologia , Linhagem Celular Tumoral , Endossomos/metabolismo , Humanos , Macrolídeos/farmacologia , Modelos Biológicos , Neuroblastoma/metabolismo , Neurônios/metabolismo , Organelas/metabolismo , Estrutura Terciária de Proteína , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA